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Abstract

This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are
digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method
based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-
the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a
combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated
by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is
proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good
performance results.

Key words: Document image analysis and recognition, Graphics recognition, Symbol spotting, Vectorial representations,
Line-drawings.

1. Introduction

Nowadays, a lot of information still resides in paper format.
The process of digitizing these document collections is justified
for space saving and preservation issues. However, as pointed
in (Tombre and Lamiroy, 2008), the design of efficient and re-
liable methods for browsing and querying these image collec-
tions is still a challenge. Indexing mechanisms which organize
the information extracted by the analysis of the document im-
ages are essential in order to improve the accessibility to these
large collections.

Digital libraries containing mostly text documents require a
first step converting printed text into ASCII characters. The
conversion into ASCII character encoding allows to retrieve
contents from the collection by the use of textual queries. How-
ever, there is an emerging interest in extracting content informa-
tion without the need of fully recognizing all the text with an
OCR either for complexity issues or because the document in-
formation is not represented by typewritten characters. For in-
stance, in (Rath and Manmatha, 2003) a word detection method
is presented aiming to localize several keywords in an histori-
cal document image database. In (van Beusekom et al., 2006)
a document categorization system is presented on the basis of
analyzing the document layout. While in (Sun et al., 2008) a
collection of electronic documents are categorized in terms of
the presence of a set of watermarks. Finally, in (Journet et al.,
2008) the analysis of texture features aim to categorize histori-
cal documents. However, since most of these works mainly fo-
cus on textual document, they are not applicable when we have
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to deal with documents containing a large amount of graphical
information. In this paper, we have focused our research on a
framework dealing with technical line-drawings such as archi-
tectural floor-plans.

Line-drawings are digitally-born documents which are gen-
erated with computer-aided design software. These software
use vectorial primitive entities such as points, lines, polylines,
circles, arcs, etc. instead of the pixels as in raster images. The
vectorial representation has several advantages. The main inter-
est of vectorial images is that they can be geometrically trans-
formed without loss of detail while bitmap images degrade with
these transforms. This makes possible to apply indefinitely
zooms or rotations without any resolution losses. In addition,
the use of vectorial primitives offers a compact data representa-
tion and the documents can be easily edited and modified.

In this paper we propose a method aiming to efficiently query
line-drawings in terms of the graphical symbols they contain.
Let us further describe in detail the problem to tackle.

1.1. Problem definition
Generally speaking, the Symbol Spotting problem can be de-

fined as the location of a set of regions of interest from a docu-
ment image which are likely to contain an instance of a certain
queried symbol without explicitly recognizing it (Tombre and
Lamiroy, 2003). One of the main applications for symbol spot-
ting methods is its use in large collections of documents. This
particular application can be seen as a Content Based Image
Retrieval (CBIR) application, but it involves some particular-
ities. The main difference is that standard document retrieval
approaches find atomic documents leaving to the user the task
of locating the real relevant information within the provided re-
sults. Whereas symbol spotting provides the user a more direct
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access to relevant information by returning the set of regions
of interest which are sub-parts of the documents in the collec-
tion that contains the desired information. Such applications
which return passages of interest within documents instead of
complete documents, are known as Focused Retrieval systems.
The interested reader is referred to the review on the topic of
focused retrieval presented in (Joty and Sadid-Al-Hasan, 2007).
This particularity provokes that spotting architectures are meant
to recognize and segment the objects at the same time. In ad-
dition, spotting systems are usually queried by example. That
is, the user segments an object he wants to retrieve from the
document database and this cropped image acts as input of the
system. This particularity reinforces the fact that spotting meth-
ods should not work for a specific set of model symbols nor
have a learning stage where the relevant features describing a
certain symbol are trained. The retrieval of the relevant zones
should be done on-the-fly as in (Wenyin, 2009). Nevertheless,
in the acquisition step, i.e. when a given document is added to
the collection (which is a process that is done off-line) several
steps of primitive extraction and description are computed. The
desired output of the spotting methods is a ranked list of zones
of interest likely to contain similar symbols to the queried one.
That is, each result should have an associated confidence value
depending on a certain similarity function between the query
and the result.

In order to be efficient, spotting processes require a querying
mechanism based on an indexing strategy over the primitive de-
scription space. Descriptors require to be simple and compact
in order to be able to be efficiently organized in the indexing
structure. The simplicity of the description technique can entail
a precision loss. If more precise recognition rates are required,
a more sophisticated recognition approach could afterwards fo-
cus on each of these zones of interest.

We can find in the literature several approaches to face the
symbol spotting problem. However, most of them work with
raster images instead of using the vectorial format. The analy-
sis and recognition of vectorial primitives entail some specific
difficulties. Line-drawings in paper format need to be digitized
and then a raster-to-vector conversion process has to be applied
to obtain the drawings in vectorial format. The obtained vecto-
rial representations from the conversion step are usually quite
unstable in terms of artifact appearances, segment fragmenta-
tion, errors in junctions, etc. which introduce a lot of noise.
On the other hand, since the shapes are compactly represented
by vectorial primitives, the amount of features we can use to de-
scribe the shapes is much lower than the features we can extract
from a pixel-based representation.

1.2. Related work
Among the Graphics Recognition community, a lot of efforts

have been devoted in the last years to the problem of locating
elements in graphics-rich document images. The first attempts
to build systems able to recognize and locate graphical sym-
bols like (Barbu et al., 2005; Lladós et al., 2001; Messmer and
Bunke, 1996), relied on a graph based representation of the doc-
ument images. These methods focused on a structural definition
of the graphical symbols. Subgraph isomorphism techniques

were then proposed to locate and recognize graphical symbols
with a single step. However these approaches do not seem suit-
able when facing large data collections since graph matching
schemes are computationally expensive.

Realizing that the computational cost has to be taken into ac-
count, several works like (Dosch and Lladós, 2004; Rusiñol and
Lladós, 2006; Wenyin et al., 2007) were centred on computing
symbol signatures in some regions of interest of the document
image. Obviously, these methods are quicker than graph match-
ing but make the strong assumption that the symbols always fall
into a region of interest. In most of the works, the regions of
interest are defined by a sliding window. However we can find
in the literature some works using other kind of heuristics to
extract regions of interest. In (Zuwala and Tabbone, 2006), a
dendrogram of junction points is able to determine the regions
of interest providing a fast way to spot graphical symbols by
the use of signatures describing density. However one of the
main drawbacks of the use of signatures is that they are highly
affected by noise or occlusions.

Other techniques work with a previous ad-hoc coarse seg-
mentation (Tabbone et al., 2003) between text and graphics,
or thick and thin lines to separate symbols from background.
Global numerical shape descriptors are then computed at each
location and compared against the training set of pixel features
extracted from model symbols. These descriptors are much
more accurate and provide good results. However, these meth-
ods assume that the symbols or objects have been previously
segmented as the case of (Tabbone et al., 2001). In order to
avoid the use of ad-hoc segmentation strategies, works like
(Adam et al., 2000) have proposed the use of digital filters ap-
plied for spotting purposes. In this paper the Fourier-Mellin
transform is able to extract symbols and characters appearing
in complete engineering drawings without segmentation. Nev-
ertheless, both signatures and global descriptors are meant to be
computed over all the regions of interest in a sequential way. In
the existing literature there is a lack of use of indexing mecha-
nisms when designing spotting systems.

In order to avoid sequential search we have presented in
(Rusiñol et al., 2009) a symbol spotting method allowing to
avoid the computation of the similarity measure for all the prim-
itives extracted from the collection by means of a lookup table.
The use of such indexing structures aims to efficiently access
and to retrieve graphic elements by similarity, and becomes a
must when dealing with applications which have to face large
collections of documents. In the particular use case presented in
that paper, we achieved to reduce the amount of distance com-
putations by almost a factor of 45 without missing an impor-
tant number of symbols. However, there is still need to com-
pute several hundreds of distances between descriptors. Even
if this is not an important burden when working with numeric
descriptors, it may be an important inconvenient when we use
symbolic description of primitives as the attributed strings used
in our previous method. We propose in this paper to enhance
the accessibility to the stored descriptors by two means. First,
we will coarsely describe primitives by the use of well-known
descriptors with low dimensionality. These descriptors result in
a numeric feature vector. The distance among those descriptors
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is easily computed as the distance between two points in the n-
dimensional description space. Second, this description space
is efficiently organized and accessed by the use of a hashing
technique. The use of hashing techniques allow in ideal con-
ditions to retrieve items by similarity with a complexity O(1).
Moreover, there is another drawback in our previous method.
Since graphical symbols are composed of several primitives,
querying a symbol consisted in separately querying each of its
primitives. The locations showing a higher accumulation of
primitives were taken as the most plausible hypotheses to con-
tain the queried symbol. This technique may lead to several
false alarms since we are not checking which primitives appear
in those zones and whether their spatial organization and their
structural configuration is consistent with the query symbol de-
sign. We propose in this paper an indexing methodology aiming
add structural information in the primitive queries.

Finally, in some domains, graphical objects can be annotated
by text labels. In these cases, the spotting mechanism could
manage textual queries to provide graphical results as presented
in (Lorenz and Monagan, 1995; Syeda-Mahmood, 1999). An-
other example of the use of textual information is the work pre-
sented in (Najman et al., 2001) where technical line-drawings
are indexed by the information extracted from the legend. In
our work we do not consider textual annotations and thus the
spotting method only manages graphical entities.

1.3. Solution outline and contributions

The proposed framework mainly consists of four different
steps:

• Preprocessing and primitive description,

• primitive hashing,

• relational querying,

• voting scheme.

Since some documents may be stored in paper format, a scan-
ning process is necessary as the first step. A raster-to-vector
algorithm is applied to these images as a preprocessing step to
obtain a vectorized representation of the line-drawings. After
that, we need to retrieve features from the document in order
to compactly represent high level entities. We propose in Sec-
tion 2 a primitive decomposition and we briefly review a set
of off-the-shelf shape descriptors which can be formulated to
describe these primitives. In Section 3, these compact repre-
sentations of symbols are organized in an indexing structure
aiming to efficiently retrieve primitives by similarity in order to
avoid sequential searches. A relational querying technique is
presented in Section 4 together with a voting scheme. The rela-
tional indexing strategy aims to combine numerical description
of primitives with the spatial relationship among them. The vot-
ing scheme aims to validate the hypothesis where a symbols is
likely to be found.

The main contribution of this work is twofold. First, the
use of indexing structures for symbol spotting in vectorial line-
drawings. The proposed segmentation-free recognition allows

to query by shape document images, which is useful to browse,
categorize and to provide efficient access to large collections
of documents. Second, from a methodological point of view,
we propose a novel structural approach for indexing vectorial
data. In our approach, vectorial primitives are coarsely de-
scribed by an off-the-shelf shape descriptor. A relational in-
dexing methodology is presented to efficiently recall regions of
interest in the document database that have similar relational
descriptions to the queried element. In addition, a performance
evaluation framework is proposed in Section 5 in order to eval-
uate both recognition and localization capabilities of the pre-
sented method. We can see in Section 6, that the presented
spotting methodology achieves good performance results.

2. Description of graphical symbols in terms of vectorial
primitives

Recognition schemes rely on two basic steps namely prim-
itive extraction and description. First, the primitive extraction
step has to transform the image drawings arising from the scan-
ning process to a vector domain. Then, in the second step, such
primitives have to be represented by a shape descriptor.

2.1. Vectorial primitives

Graphical symbols are usually composed by the union of sev-
eral simple sub-shapes. According to that, a symbol can be de-
scribed in terms of the assembly of sub-shapes which composes
it. The basic primitives we want to extract to represent a graph-
ical symbol are these simple sub-shapes.

As our work is focused on the management of graphical
data in vectorial format the documents which are in paper for-
mat need a digitalization process. The documents are scanned
and de-noised by some simple morphological operations. The
raster-to-vector algorithm proposed in (Rosin and West, 1989)
is then applied to these line-drawing images to obtain a vecto-
rial representation of the documents. However, vectors as it,
are not suitable to be used as primitives due to its instability
in terms of artifacts, fragmentation, errors in junctions, etc. A
higher level entity has to be used as primitive. Adjacent vec-
tors are merged together into polyline instances. These poly-
lines represent then the sub-shapes conforming a given graph-
ical symbol. In our method, we use the contour of the closed
loops conforming a symbol as the primitives to polygonally ap-
proximate and to merge as single polylines. Note that these
primitives are only valid if the symbols appearing in the line-
drawings are composed by closed loops. In our case scenario,
most of the symbols we can find in floor-plan documents fit the
assumption that they are formed by several loops. In other kinds
of documents, other primitives as key-points, contours, skele-
tons, etc. should be used to describe the symbols. Anyway,
our spotting architecture is independent of the chosen primi-
tives and can be applied no matter which primitive is taken to
represent the symbols.

Formally, let p = {s1...sn} be a polyline consisting of n seg-
ments si. A symbol is represented in terms of its polylines
representing loops and denoted as S = {p1...pm}. The gravity
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Figure 1: Primitive symbol decomposition. A graphical symbol
is decomposed in sub-shapes which are polygonally approxi-
mated. An attributed proximity graph is the basis for the rela-
tional indexing.

center of the symbol is computed as the average of the gravity
centers of each polyline, and it is denoted as mC . The grav-
ity center of the symbol will be used in the subsequent process
of localization of the query symbol inside the line-drawing im-
ages. To represent the spatial organization of primitives which
compounds a symbol, a proximity graph is constructed. Us-
ing the k-NN algorithm, each primitive is linked to its k nearest
primitives by an edge of the graph G(S ) = (V, E). A node ni ∈ V
is attributed with the primitive pi. An edge e ∈ E is denoted as
e = (ni, n j,

−→vi j) where ni and n j are nodes of V and −→vi j is a vec-
tor representing the spatial relationship between the primitives
pi and p j. This proximity graph is the basis of the proposed
relational indexing technique.

We can appreciate in Fig. 1 how the different parts of a sym-
bol are detached making the loops meaningful primitives, and
how their spatial organization is also an important cue to de-
scribe the symbol under analysis.

Note that the same primitive representation and extraction
is used for the complete documents in the acquisition step. A
given document D is composed by a large number of polylines.
A proximity graph G(D) is also computed to link nearby primi-
tives and store their spatial relationship. Obviously, in this case
we do not know which polylines compose a symbol, the graph
just represents neighbouring primitives.

The polygonally approximated sub-shapes are used as the lo-
cal components of a given symbol. To describe them, we apply
at each primitive separately one of the off-the-shelf global nu-
merical shape descriptors existing in the literature.

2.2. Symbol description

Formally speaking, given a symbol S = {p1...pm} and a shape
descriptor f defined over the space of primitives, after applying
f to each primitive we will have in return a set of feature vectors
f (pi) for all i ∈ [1,m]. A symbol is then expressed by a set

of feature vectors describing its conforming primitives. Let us
briefly review in the next section the used shape descriptors.

2.3. Global numerical shape descriptors
Global numerical shape descriptors are formulated in terms

of a compact representation of expressive invariant features de-
scribing a shape as a whole. The interested reader is referred to
the review of shape representation and description techniques
by (Zhang and Lu, 2004). In this section we will summarize
the global shape descriptors used in our experiments. We make
no claims about robustness of the chosen descriptors. Depend-
ing on the nature of the data better descriptors can be used. The
point here is only to test several different shape descriptors. De-
pending on the user’s needs, no matter which descriptor can be
chosen and plugged into the system instead of the ones we use
here. The selection of one or another shape descriptor is ap-
plication dependent. For example, if we are interested in re-
trieving just correct symbols despite missing some positives, an
accurate shape descriptor has to be chosen. On the other hand,
if the user wants to retrieve all the instances of a given symbol
without really giving importance to the presence of false posi-
tives, one must choose a simpler shape descriptor. Three shape
descriptors with different accuracy are chosen here to test the
behavior of the system.

Let us further overview the numerical shape descriptors used
in our work. Firstly we introduce some basic notation. We
consider an image I(x, y) containing the object shapes O with
area A and perimeter P. Its centroid is the point c = (x̄, ȳ).
The boundary B of the shape is polygonally approximated
by a polyline pO composed by a set of n adjacent segments
si = {(xi, yi), (xi+1, yi+1)}. A shape descriptor will result in a
compact representation of the shape formulated in terms of a
feature vector f (O). In our case, the objects O will be the prim-
itives composing a symbol. Let us briefly introduce the well-
known shape descriptors we use.

2.3.1. Moment invariants
The set of seven invariants proposed in (Hu, 1962) involving

moments up to third order, are widely used as shape descriptors.
Let us see how these invariants can be computed for a vectorial
primitive. The central (p+q)th order moment for a digital image
I(x, y) is expressed by

µpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qI(x, y) (1)

The use of the centroid c = (x̄, ȳ) allow the descriptor to be
invariant to translation. A normalization by the object area is
used to achieve invariance to scale.

ηpq =
µpq

µ
γ
00

where γ =
p + q

2
+ 1 (2)

The geometric moments can also be computed on the con-
tour of the object as introduced in (Chen, 1993; Sardana et al.,
1994) by using eq. 1 only for the pixels of the boundary of
the object. In that case, a normalization by the object perime-
ter is used to achieve invariance to scale by using eq. 2 with
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γ = p + q + 1. When the contours of the objects are polygo-
nally approximated, the geometric moments can be formulated
for line segments as introduced in (Lambert and Gao, 1995;
Lambert and Noll, 1996). Finally, the invariance to rotation is
achieved by using the set of seven functions proposed by Hu.
The feature vector f (O) is composed by these seven invariants
after applying the set of normalization functions presented in
(Hupkens and de Clippeleir, 1995) with monotonic rescaling to
get each value into similar numerical ranges and achieve a bet-
ter robustness to noise.

2.3.2. Simple shape description ratios
Shapes are also commonly coarsely described by the use of

some simple ratios. The eccentricity of a given shape is the ra-
tio of the length of the longest chord of the shape to the longest
chord perpendicular to it. It can be computed by using the mo-
ments described in eq. (1) as

ecc =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11

(3)

The circularity of a shape is defined as how closely-packed
the shape is. For a circle it is equal to 1, all other shapes have a
circularity lesser than 1. It is computed as

circ =
4πA
P2 (4)

Obviously, there are many other shape ratios describing cer-
tain geometrical properties. The interested reader is referred to
(Russ, 2002; Stoyan and Stoyan, 1994). In our case, we only
use these two ratios as the feature vector describing a shape.

2.3.3. Fourier descriptors
Finally, the use of the Fourier transform is also a well-known

method to describe shapes and can be easily adapted to vec-
torial primitives. Given a polyline pO which is the polygonal
approximation of the boundary of a shape O, we use as a vec-
torial shape signature the centrical distance function computed
as

ri =

√
(xi − x̄)2 + (yi − ȳ)2 ∀ (xi, yi) ∈ pO. (5)

In (Zahn and Roskies, 1972), a Fourier descriptor of a shape
is obtained by applying the Fourier transform on the signature
representing the shape boundary. Sampling ri to N = 2n sam-
ples so the use of the FFT is possible, the feature vector of the
Fourier descriptor is given by

f (O) =
[
|F1|
|F0|
...
|FN/2|
|F0|

]
(6)

where Fi corresponds to the ith component of the Fourier
spectrum. Other shape signatures as curvature or complex co-
ordinates can be used to compute the Fourier descriptor. The
interested reader is referred to (Kauppinen et al., 1995).

Let us study in the next section how to adapt classical in-
dexing structures used in the databases field to index graphical
symbols in a document database.

3. Multidimensional hashing to index primitives

Shape recognition methods suffer from a huge constraint. As
the number of considered shape models is increased, the com-
putational cost of the matching step can be unaffordable. As
pointed in (Califano and Mohan, 1994), in order to avoid a
brute-force matching step, the use of indexing paradigms be-
comes necessary. In the data mining field, the study and re-
search of efficient indexing structures is a quite prolific topic.
Large databases need indexing structures to support efficient
data search and retrieval. However one of the main character-
istics of shape recognition stems from the use of large feature
vectors describing the shapes. Whereas the performance of a
shape descriptor usually is improved by the use of larger fea-
ture vectors, most indexing algorithms do not work effectively
and efficiently in high-dimensional spaces. This is due to the
so-called curse of dimensionality described in (Bellman, 1961).
In our work, primitive shapes are coarsely described by small
feature vectors which can be efficiently retrieved by similarity
from an indexing structure.

From the wide taxonomy of indexing structures (cf. (Gaede
and Günther, 1998)), the point access methods are the ones
which are more suitable for our purposes. Tree-based struc-
tures are frequently used in indexing mechanisms. Neverthe-
less, they suffer from several drawbacks. The querying process
can be computationally expensive since the tree have to be tra-
versed and in addition, tree balancing algorithms are needed to
maintain an effective search performance. As in our case we
want to foster the querying speed and we want a system where
the data could be easily added at any moment, a multidimen-
sional hashing technique has been selected instead of a tree-
based one. In particular, we use a grid file structure, described
in (Nievergelt et al., 1984), in order to index the vectorial prim-
itives. Let us overview with more detail how multidimensional
hashing methods work.

Multidimensional hashing methods partition the space into
hypercubes of known size and group all the records contained
in the same hypercube into a bucket. The buckets are uniquely
identified by a key-index which aims a fast retrieval of all the
data contained in the bucket. A hash function performing one-
dimensional partitions, automatically computes the key-index
of a given query to identify the bucket which it belongs to.

In our case, given a polyline, a feature vector is computed
using one of the presented descriptors and then a hash function
obtains the key-index. This hash function establish a quantiza-
tion criterion to apply to each dimension of the feature vector
to limit the key-index parameters to a finite number of discrete
values. To avoid boundary effects, each primitive is stored into
the two closest buckets in each dimension.

Usually, the main drawback of hashing techniques are the
collisions. Given two different items to store in the database,
we have to guarantee that the hash function used to index such
items do not assign the same key-index to them. To overcome
this problem expensive re-hashing algorithms are applied once
a collision is detected. In our case, collisions are not a problem
but the basis of our indexing strategy. Given two similar (but
not equal) primitives, they are represented by a compact feature
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vector. Hopefully, if the two primitives have a similar shape, the
two feature vectors will be two nearby points in the description
n-dimensional space. The partition of this space by the grid file
has to guarantee that both points fall into the same bucket (or
at least to neighbouring buckets) in order to store in a single
entry all the similar primitives. This technique allows to have
an efficient retrieval by similarity.

Figure 2: The use of a grid file to index vectorial primitives.
The hash function projects the feature vectors into key-indices.
Two similar primitives are stored into the same bucket.

In Fig. 2 we can appreciate an overview of how the indexing
mechanism works. Formally speaking, a symbol S = {p1...pm}
is described by a set of feature vectors f (pi) = [x1...xn] for all
i ∈ [1,m] arising from one of the descriptors presented above
in section 2.3. A hash function hp([x1...xn]) = ki establish a
quantization criterion to apply to each dimension of the feature
vector and returns a key-index identifying a certain bucket in
the n-dimensional indexing space. The hash function hp( f (pi))
rounds off each value x of f (pi) defined over a continuous range
to the nearest value in a set of predefined discrete integer values
by means of a threshold q.

h([x1...xn]) = [x′1...x
′
n] where x′j = ⌊q × x j⌉∀ j ∈ [1, n] (7)

The feature space is thus simplified to a discrete number (finite)
of possible features, each one of those identified by a unique in-
teger number ki. We have experimentally determined the value
of the threshold q by a classification experiment over a set of
shapes from the MPEG experiment (Latecki et al., 2000). In
this experiment we tried to maximize the clustering of similar
shapes under the same bucket and tried to reduce the quantiza-
tion error given by

e =
n∑

i=1

xi − ⌊q × xi⌉ (8)

by analyzing the results over a ROC space (Fawcett, 2006).
As the shape descriptors are invariant to similarity transfor-

mations and robust to noise, even if the input primitives are
not completely equal, the whole procedure leads to the same
bucket. The symbol S is then represented by the set of key-
indices {k1...kk} with k ≤ m since all the similar primitives are
represented by the same key-index.

In each bucket the information of the position in a three-
dimensional space (i.e. (x, y) coordinates of the primitive grav-
ity center appearing in a certain document d of the collection)
of all the primitives in the document database having key-index
ki is stored. To summarize this section, the proposed indexing
methodology allows to retrieve all the spatial locations where
similar primitives than the queried one are likely to be found.

4. Relational indexing and hypothesis validation

Since graphical symbols are composed of several primitives,
indexing a symbol consists in separately indexing each of its
primitives. This approach has a big drawback since the spatial
coherence of the retrieved primitives is not taken into account.
We present in this section a relational indexing algorithm to
furnish the indexation methodology with spatial information.
A voting scheme aiming to validate the spotted locations is also
presented.

4.1. Relational indexing

When considering large databases, many symbols may share
a substantial part of primitives with many other. Bag-of-words
models describe objects in terms of the presence of the prim-
itives which compounds them, ignoring their spatial structure.
Recently, a method to locate objects in images using a bag-of-
words model has been proposed in (Sivic et al., 2005). The
large amount of features taken from interest points aim to dis-
card spatial information. However, in our case, the presence
in a given location of a set of primitives do not guarantee the
presence of the searched symbol, since symbols are not usually
composed by too many primitives. The geometrical configu-
ration of these primitives is a crucial information to refine the
zones of interest. Inspired by the work presented in (Costa and
Shapiro, 2000), spatial relationships among primitives are also
considered when indexing in order to obtain much more valid
hypothesis.

Given a symbol represented by a set of primitives S =

{p1...pm}, the similar primitives appearing in a document can
be retrieved by using the set of key-indices {k1...kk}. To take
into account the spatial configuration of those primitives, the
proximity graph G(S ) has to be used. The edges ei j ∈ E repre-
sent the relationship between two primitives stored in the nodes
ni and n j. These edges can be used to retrieve by similarity
pairs of primitives agreeing with a certain spatial distribution.
An example on the use of relational indexing is shown in Fig. 3.

In order to efficiently retrieve all the edges of a query sym-
bol, a hash table HR is used to store in memory the adjacency
matrix of the proximity graphs. This hash table is indexed by
pairs of primitives. The use of hash tables with multiple indices
has been used over the years to store and guarantee an efficient
access to sparse matrices, like presented in (Smith et al., 1972).
The entry of the table HR[ka, kb] stores all the possible edges ei j

where the primitive stored in the node ni is indexed by ka and
the primitive of the node n j is indexed by kb. In the acquisition
step, for all the documents D in the collection, each graph G(D)
is added to the table HR so a spatial relationship between two
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(a)
(b) (c)

Figure 3: Relational indexing. For the sake of visibility, only two primitives p1 and p2 are queried. (a) Sample line-drawing and
the query symbol; (b) results of retrieving a couple of primitives by similarity without taking into account the spatial information,
the resulting primitives are highlighted in gray; (c) retrieving the same two primitives by using the relational indexing mechanism.

Figure 4: Relational indexing framework. Starting from the proximity graph, each edge performs a relational query based on the
indices representing the primitives stored in the nodes. A list of vectors is retrieved corresponding to spatial relationships between
primitives in target documents. A center mapping function transform these vectors into hypothetic centers where the symbol should
be found.

given primitives can be efficiently retrieved from all the docu-
ment collection.

When querying a given symbol, each edge of the graph is
considered. A querying function Q(ei j,mC), taking an edge and
the center of the query symbol mC , results in a list of hypothetic
centers LhC = [hC1...hCx] where to find the two primitives with
a given pose. We can see in Fig. 4 how this function proceeds.

The key-indices representing the primitives stored in the nodes
are computed by using the hash function hp. Both indices iden-
tify an entry of the hash table HR storing a list of edges ei j, and
most importantly its associated vectors −→vi j. These vectors are
the spatial distributions of the primitives appearing in the docu-
ment database. A center mapping function Cmap(−→vi ,mC) = hCi

applies a scale and rotation transform to the center mC in order
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to find the pose of the hypothetic center hCi depending on the
vector −→vi . We can see an example of the hypothetic center lo-
cation in Fig. 5. Note that the center mapping process align the
query edge to the retrieved edges in the line-drawing database,
thus being invariant to scale and rotation transforms.

Figure 5: Center mapping function to find the pose of the hy-
pothetic centers given an edge of the relational query and the
gravity center of the query symbol.

By applying the relational indexing function to each edge of
the proximity graph of the query, the locations in the documents
where we can really find the queried symbol, should appear
several times in the hypothetic centers list. The use of a voting
scheme reinforces these hypotheses and validates the possible
locations.

4.2. Voting scheme
Following the idea of the Generalized Hough Transform

(GHT) (Ballard, 1981), each of these centers accumulate votes.
Applying the querying function to each edge of the graph from
the query symbol, we accumulate evidences in the hypothetic
centers in the stored documents where it is probable to find
similar primitives with the same spatial organization than the
query. In the voting space, the coherent votes tend to form
salient peaks, the rest of votes will be scattered in different lo-
cations. A simple ranking of the vote clusters result in the po-
sitions of the documents where it is more feasible to find the
queried symbol.

The querying process leads to consider each pair of prim-
itives of the queried symbol S = {p1...pm}, implying Cm

2 ac-
cesses to the hash table HR. The number x of hypothetic centers
where to cast votes is the same as the amount of position vectors
are stored at each table entry. Obviously, the x value is directly
related to the number of documents stored in the library. That
results that for each query symbol we have

x ·Cm
2 = x ·

(
m
2

)
= x · m!

2(m − 2)!
(9)

centers where to accumulate votes. The locations where the
votes are casted are sorted and returned as the retrieved regions
of interest. Note that no threshold to decide whether a symbol
is present or not is used. Let us further describe in the next
Section how we proceed to evaluate a symbol spotting method.

5. Performance evaluation

Symbol spotting can be seen as a particular case of the In-
formation Retrieval problem. We base our performance mea-
sures on those used in this field. In the retrieval problems, most
measures to evaluate the effectiveness are based on a binary
labelling of relevance of the items, namely that every item is
considered as relevant (rel) or non-relevant (rel), and a binary
retrieval notion, either an item is retrieved (ret) or not (ret). To
evaluate the spotting system in terms of its abilities to segment
and recognize symbols, we reformulate the typical measures of
precision, recall, fall-out and generality (see (van Rijsbergen,
1981) for more details) in terms of the amount of overlapping
areas between results and the ground-truth. These ratios are
computed as follows

Recall R = A(rel∩ret)
A(rel) , Precision P = A(rel∩ret)

A(ret)

Fall-Out Fo = A(rel∩ret)
A(rel)

, Generality G = A(rel)
A(tot)

(10)

We can see in Fig. 6 an example of how to obtain and inter-
pret the precision and recall ratios. In this case, the system only
retrieves a single zone of interest, merging the two symbols.
We detail in Table 1 the overlapping areas and the computed
ratios from this retrieval matrix. As some non-relevant area is
retrieved, the precision value does not reach the hundred per-
cent. On the other hand, a portion of a symbol has been missed
harming the total recall value. Obviously, the fall-out and the
generality ratios are highly dependent on the size of the docu-
ments and we will have much more lower values than the shown
in the example as the non-relevant area will be much higher.

Precision versus recall and fall-out versus recall plots give
information of the correctness of the recognition and the refine
level of the segmentation. However, sometimes it is hard to
compare different methods by a couple of numbers and some
composite measures have been used to rank the methods under
study. The average precision AveP uses each precision value
after truncating the result list after each relevant item, it is com-
puted as follows

AveP =
∑N

n=1(P@n × r(n))
|rel| (11)

Being N the number of retrieved areas, P@n the precisions
at a certain cut-off rank n, and r(n) a binary function on the rele-
vance of a given rank n. Another classical composite measure is
the F-score which is the weighted harmonic mean of precision
and recall, computed as follows

Fβ =
(1 + β2) × P × R

(β2 × P) + R
(12)

We finally complement these measures by giving the recog-
nition rate at symbol level and the amount of false positives.
These measures are only meant to evaluate the symbol recog-
nition task despite the localization ability. We will only con-
sider a binary concept of retrieval, either a symbol is found or
not. If the overlapping between a resulting polygon and the
ground-truthed representation of a symbol is more than a given
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(a) Original (b) Ground-truth

(c) Result (d) Polygon Overlapping

Figure 6: Original image (a), its ground-truth (b) and the result (c) of a spotting system. The overlapping between results and
ground-truth (d) is labelled whether ret ∩ rel (light gray), ret ∩ rel (dark gray) or ret ∩ rel (black).

Table 1: Retrieval matrix for example in Fig. 6

Relevant Non-Relevant TOTAL

Retrieved 55449 6858 62307

Not Retrieved 5111 10447 15558

TOTAL 60560 17305 77865

Precision = 88.99%

Recall = 91.56%

Fall-Out = 39.63%

Generality = 77.77%

threshold we will consider the symbol as recognized. On the
other hand, if the resulting polygon has less overlapping with
the ground-truth than the threshold, the result is considered as a
false positive response. More details about the proposed proto-
col for evaluating the performance of symbol spotting systems
can be found in (Rusiñol and Lladós, 2009).

6. Experimental results and discussion

Let us first introduce the dataset we use for the spotting ex-
periments.

6.1. Dataset

To perform the experimental results we worked with a col-
lection of architectural floorplans consisting of 42 images (of
3215 × 2064 pixels in average) arising from four different
projects. These images are polygonally approximated result-
ing in a collection of vectorial documents. The symbols taken
into account for these experiments are divided in 38 classes and
we have in total 344 instances in the document images. In a sin-
gle document image the average of symbols is around 8 and it
goes from 0 to 28 symbols. The models to query the document
database are cropped from the document images, so they also
contain vectorial distortions. We can see in Fig. 7 some of the
symbols taken as models.

To build the ground-truth, an annotation tool has been devel-
oped. The user can select symbols and label them. The convex
hull (Barber et al., 1996) containing all the points of all the
polylines composing the selected symbol is taken as the mini-
mum area of interest containing the symbol. The convex hull
coordinates and the symbol category as well as other informa-
tion about the document are stored in a XML file (following the
same file structure used for page layout ground-truth by (An-
tonacopoulos et al., 2006) containing the information about the
whole library1.

6.2. Spotting Results

Let us first see some qualitative results. When querying a
model symbol against the database, the convex hull of the ac-
tivated polylines in the documents conform a set of regions of
interest which are sorted by confidence value depending on the
number of received votes. We can see in Fig. 8 the first five
results of querying several symbols in a given document. As
we can appreciate, all symbols are found and obviously some
areas of false positives appear as we requested more results than
appearances of symbols in the document. However we observe
two phenomena, usually, two close symbols (i.e. burners in

1The vectorial image dataset as well as its ground-truth is pub-
lic available and can be downloaded through the following website
http://www.cvc.uab.cat/∼marcal/FPLAN/
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(a) Burner (b) Chair

(c) Stairs (d) Television

Figure 7: Symbol models.

Fig.8a or chairs in Fig. 8b) are grouped in a single region of
interest, on the other hand it is common to find that a symbol
is well spotted but the returned region of interest is bigger than
expected (i.e. the stairs in Fig.8c). These two phenomenons
will of course decrease the precision in terms of retrieved area.
Figs. 9 and 10 show the first twenty results when querying sev-
eral symbols in the whole document collection using the Fourier
shape descriptor. As we can appreciate, most of the results cor-
respond to the correct queried symbol, even if some false posi-
tives areas appear.

Regarding the quantitative evaluation, we can see in Fig. 11a
the precision and recall plot corresponding to the average of
querying all the models in the whole collection using the three
different primitive description techniques. The starting preci-
sion differs significantly from a descriptor to another. Fourier
descriptors are much more accurate than the simple ratios. On
the other hand, the more accurate is a shape descriptor, the more
symbols are missed due to slight shape changes. Simple ratios
reach best recall values than accurate shape descriptors. This
tradeoff between precision and recall is an indicator of the per-
formance of the system and the user should select a descriptor
or another depending on the application needs. The interest-
ing point here is to notice that the tend of the three curves is
almost the same despite its precision variances and the final re-
call value.

Similar responses can be appreciated from the fall-out and re-
call plot of Fig. 11b. The use of coarser description techniques
entails a larger amount of false positives but yields to best re-
call values. Again, the tend of the three curves is maintained
without any sudden changes.

In order to give a better idea of the performance of the sys-
tem some measures of quality are given in Table 2. Fourier
descriptors yield the best average precision as they provide rel-
evant results ranked in the first positions. Boundary moments
have the best F-score since they show the most moderate trade-
off between precision and recall. The simple ratios yield the
best recognition rates at symbol level since they are able to
retrieve the major number of symbols. At symbol level, the

Fourier descriptors are the ones which provide less amount of
false alarms. In order to evaluate the efficiency of the indexing
method, we provide the time taken to perform a query. Note
that the time to retrieve a symbol from a document is highly
related to the accuracy of the selected method. Methods having
higher recognition rates expend more time in retrieving zones
of interest since the table entries are more populated and the
amount of false positives is also increased. On the other hand,
the methods which have less recognition rate but also less false
positives, are usually less computationally expensive. In order
to check the efficiency gain when using the proposed indexed
methodology we performed the same experiment by storing the
primitives in a list that implies a sequential access to perform
the search of primitives by similarity instead of the presented
hashing technique. The results show that in average the use
of the hashing technique provides the results near 1200 faster
than a sequential access to the primitives and their spatial re-
lationships. Finally, note that the low generality of the dataset
explains the low precision values reached by the three methods.

We have performed another experiment aiming to test if the
number of primitives of the queried symbol has impact on the fi-
nal performance of the method. The possible queries have been
partitioned into four different group depending on the amount
of composing polylines and we can see in Table 3 the recogni-
tion rates (RR) and the amount of false positives (FP) for all the
different descriptors. We can see that usually, the greater the
number of primitives is, the better the system responds. How-
ever, there is a side effect on increasing the number of prim-
itives. As we consider more complex symbols the amount of
false positives which are returned is also increased.

Finally, note that our work do not focus on the evaluation of
the descriptors, the interesting point is to see that the system
behaves in the expected way depending on the selected shape
descriptors. The choice of one or other descriptor will only af-
fect in the maximum precision and maximum recall leaving the
behavior of the system intact. The shape descriptor can be seen
as a black box which can be plugged into the system depend-
ing on the application needs. Retrieval applications may need
better precision values whereas categorization applications are
interested in higher recall values.

7. Conclusions

A relational indexing mechanism to spot symbols in a col-
lection of line-drawing images in vectorial format has been pre-
sented. A first step of primitive extraction and description has
been introduced in order to have a compact representation of
the graphical symbols. These primitives are organized in an
indexing structure aiming to retrieve by similarity all the prim-
itives in the collection. A relational indexing mechanism has
been presented in order to take into account not only the sim-
ilarity of the primitives which compounds a symbol but also
the spatial relationship among them. Finally a Hough-like vot-
ing scheme aims to validate the hypothesis where a symbol is
likely to be found. In addition, a set of measures to evaluate the
performance of spotting systems in terms of recognition and
localization abilities has been presented.
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a) b)

c) d)

Figure 8: Top five indexed regions of interest when querying the burners (a), the chairs (b), the stairs (c), and the television set (d).
The correct results are framed by a rectangle, remaining areas are false positives.

Our feeling is that one of the right directions to follow in
spotting-related problems for the next years is the use of coarser
descriptors rather than accurate descriptions techniques. We
have shown that the combination of coarse description and rela-
tional validation, i.e. combining numeric and structural descrip-

tion techniques, yields very good results. In particular, we have
proven in this paper that there is no need for high-dimensional
descriptors for spotting purposes, and with really simple shape
descriptors, we can reach acceptable performances when com-
bining those descriptions with relational information. Obvi-
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(a) (b) (c)

(d)

(e)

(f)

Figure 9: Qualitative results of the relational indexing method (1). (a) Query symbol chair; (b) query symbol TV set; (c) query
symbol toilet; (d),(e) and (f) first 20 retrieved regions when querying the symbols (a), (b) and (c) respectively.

Table 2: Measures of quality.

Method Composite measures Symbol level measures Other measures

AveP F1-score Rec. rate (%) False Pos. Time (secs.) G (%)

Ecc. 20.08 6.87 93.62 153.42 3.44

0.16Moments 39.77 23.34 91.3 76.76 0.71

Fourier desc. 41.99 21.45 73.33 58.76 0.78
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(a) (b) (c)

(d)

(e)

(f)

Figure 10: Qualitative results of the relational indexing method (2). (a) Query symbol stairs; (b) query symbol sink; (c) query
symbol burners; (d),(e) and (f) first 20 retrieved regions when querying the symbols (a), (b) and (c) respectively.

ously, depending on the intended final application, the word
“acceptable” may adopt several meanings. As we have seen in
the experimental part, if the user of the final application is inter-
ested in retrieving the most of the relevant portions of images
from the collection, no matter the number of false alarms, a sim-
pler description should be used. If the user is more interested
in a better precision without caring the fact the system misses
symbols, then we should start using more and more complex
and fine description techniques. However, we strongly believe
that for most of applications, the use of low-dimensional de-
scriptors is enough. The choice of such low-dimensional fea-

ture vectors avoids the so-called curse of dimensionality and
provides an efficient access to the data. The good results ob-
tained by such simple description techniques are also favored
by the inclusion of relational and structural information of the
graphical symbols. The use of a joint local numerical descrip-
tion and structural analysis contributes to obtain an important
discriminative power. However structural information should
be added carefully since the analysis of complex structural re-
lationships (entailing comparisons in the graph domain) can not
be managed on the context of symbol spotting due to its huge
complexity.

13



(a) Precision and recall (b) Fall-out and recall

Figure 11: Precision and recall plot (a) and fall-out and recall plot (b) for all symbols in the whole collection.

Table 3: Effect of the number of primitives.

Number of primitives Method

Ecc. Moments Fourier desc. Average

RR(%) FP RR(%) FP RR(%) FP RR(%) FP

m ≤ 4 90.2 136.2 90.2 54.6 54.2 22.3 78.2 71

5 ≤ m ≤ 6 93 158.2 89.6 64.8 68.9 56 83.5 93

7 ≤ m ≤ 9 97.2 173.2 97.2 111.8 91.6 101.8 95.3 128.9

9 ≤ m 100 141.5 92 98.6 94.8 88.8 95.6 109.6

Finally, one of the critical assumptions that we made along
this paper is that the graphical symbols can be well represented
by a particular primitives, the region contours. Obviously, not
in all the cases the symbols are formed by closed loops, and
such proposed primitives can not be used. The scalability of
the proposed method has to be further investigated by analyz-
ing other kind of documents such as electronic diagrams or me-
chanical schemes.
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