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Abstract

In this work, we address the task of scene text retrieval: given a text query,

the system must return all images containing the queried text. The proposed

model uses a single shot CNN architecture that predicts bounding boxes and

builds a compact representation of spotted words. In this way, this problem

can be modeled as a nearest neighbor search of the textual representation

of a query over the outputs of the CNN collected from the totality of an

image database. Our experiments demonstrate that the proposed model

outperforms previous state-of-the-art, while offering a significant increase in

processing speed and unmatched expressiveness with samples never seen at

training time. Several experiments to asses the robustness of the model are

conducted as well as an application of real-time text spotting in videos.

Keywords: Image retrieval, Scene text detection, Scene text recognition,

Word spotting, Convolutional Neural Networks, Region Proposals
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1. Introduction7

The development of language is one of the most influential inventions of8

humankind that allows the communication of abstract and complex ideas.9

Similarly, written text permits this set of complex ideas to be depicted in an10

explicit and semantic manner. As it is shown by several authors [1, 2, 3],11

there is a big percentage of media that contains text, especially in urban12

scenarios and documents. Adding this to the fact that there is ample avail-13

ability of data and the importance of text, it becomes essential to develop14

and refine algorithms that exploit the richness of textual information found in15

images and video. Leveraging text in scene imagery allows the emergence of16

tasks such as image retrieval [4, 5], scene understanding [6, 7], instant trans-17

lation [8, 9], human-computer interaction, robot navigation [10, 11], assisted18

reading for the visually-impaired [12, 13] and industrial automation [14, 15].19

In the previous years significant advances have been accomplished, partic-20

ularly since the introduction of AlexNet [16], architecture that won the21

ILSVRC2012 [17] contest by using deep learning techniques. Text spotting22

has been diverging from older approaches that used hand-crafted features23
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towards current ones that employ automatic feature learning by exploiting24

deep learning methodologies [12, 18]. Nonetheless, text spotting is not a triv-25

ial task and remains as an open problem in the research community. Putting26

aside the complexity of spotting text in the wild, the importance that text27

encompasses is given by the high level semantic and explicit information,28

which can not be leveraged by using visual cues alone. For example, there is29

a high degree of complexity involved in labelling images without considering30

the text found in them, even for humans. This effect is evident in Figure 1,31

in which the storefronts alone can belong to a wide plethora of businesses,32

but the exact label can be inferred if and only if the text contained is read33

and leveraged appropriately. Research conducted by Movshovitz et al. [19]34

showed that while training a shop classifier, the proposed model ended up35

learning and interpreting textual information as the only way of differentiat-36

ing between diverse businesses. The described effect is evident and addressed37

explicitly in later works conducted by [20, 21], which focuses on fine-grained38

classification of storefronts and bottles respectively. Additional tasks that39

require integration of textual and visual information to generate a common40

domain knowledge have been proposed such as in [6, 7], which opens up new41

research paths.42

Closely related to our work, Mishra et al. [22] proposed the task of scene43

text retrieval. The input to the system is a text query, which the system44

must employ to return all the images that contain the queried text. This45

task requires systems that are robust enough to perform fast word spotting46

while at the same time holding the capacity of generalizing out of dictionary47

queries never seen before. An intuitive approach to tackle such a problem48

3



Figure 1: The visual appearance of different business places in images can be extremely
variable. It seems impossible to correctly label them without reading the text within them.
Our scene text retrieval method returns all the images shown here within the top-10 ranked
results among more than 10, 000 distractors for the text query “hotel”.

is to make use of state of the art reading systems, and use the output pre-49

dictions of it to find the closest match with the given query. However, as it50

is shown by [22], such attempts commonly have low performance caused by51

limitations in end to end reading systems. On one hand, end to end reading52

systems are evaluated on recognition, a different task that focuses on achiev-53

ing high precision scores, often using a specific language dictionary [23] or as54

it is proposed by [24, 13] a short dictionary per image. On the other hand, a55

retrieval system requires a large number of proposals (high recall) which can56

be beneficial at the moment of finding close matching detections when com-57

pared to a query. It is worth noting that end to end reading systems usually58

consist of at least two clearly defined stages that employ the encoder-decoder59

paradigm. The pipeline comprised by these two stages, more often that not60

are slow at the moment of generating predictions of the text contained in61

an image. This existing time constraint hinders the use of such algorithms62

in real-time scenarios or at the moment of indexing large scale collections of63

images and documents.64

In order to exploit the particular requirements that need to be addressed65
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by a retrieval system, we propose in this work a real-time, high-performance66

word spotting method that detects and recognizes text in a single calculation67

of a Fully Convolutional Neural Network (FCNN). The proposed architec-68

ture is based on the YOLO model [25, 26], a widely used single shot object69

detector which in our case is employed to construct a PHOC (Pyramidal His-70

togram Of Characters) [27, 28] predictor. By employing this methodology,71

our model is able to perform text detection and recognition in a single cal-72

culation thus making it suitable for real time applications or to index large73

scale image collections at an unmatched speed.74

The main contributions of using the proposed model, as it is shown in our75

previous work [29] are: firstly, the usage of a layout comprised by an end-76

to-end jointly trainable FCNN. Secondly, the usage of the PHOC as a word77

representation instead of a direct word classification over a closed dictionary.78

Thus, providing an elegant mechanism to generalize to any text string, al-79

lowing the method to tackle efficiently out-of-dictionary queries. Lastly, due80

to its design, the adoption of this method achieves unmatched speed when81

processing images to construct a compact representations of the recognized82

text instances. As an extension to the preceding research, in this work we83

analyze deeply the capacity of dealing with out-of-vocabulary queries of our84

model by conducting exhaustive experiments performed in two multi-lingual85

datasets. These experiments prove that the proposed method is able to suc-86

cessfully apply knowledge transfer acquired at training time to construct87

word representations of previously unseen text samples at inference time. As88

an additional section we present supplementary experiments and provide an89

analysis of the system under different kinds of imperfect image conditions90
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such as rotation, blur, occlusion and compression, experiments that confirm91

the robustness of the proposed architecture. Lastly, we propose an applica-92

tion of real-time text spotting on video, in which the model needs to confirm93

its robustness to noise and distortions while at the same time maintaining94

its characteristic high processing speed.95

2. Related Work96

In the past years, several advances in Deep Learning have been accom-97

plished due to data availability and computing power [3], allowing deep learn-98

ing models to surpass several benchmarks in a wide range of tasks. The main99

advantage of using deep learning methodologies is the possibility of automatic100

feature learning, rather than hand-crafted ones. Most literature [18, 12] di-101

vide the existing methods as: text detection, text recognition, end-to-end102

systems. Other applications such as fine-grained classification, image under-103

standing and image retrieval are briefly described in the upcoming sections.104

2.1. Scene Text Detection105

Initial deep learning methodologies employed several steps to produce106

proposals. In the work presented by [30], a CNN is used to predict if a107

given pixel belongs to a character, forms part of a text region and its ori-108

entation. Yao et al. [31] propose a CNN that outputs text proposals, which109

are filtered by separating different text instances by employing a semantic110

segmentation model. Later works focus on simplifying the pipeline and thus111

improving speed and training of models. These models usually follow a two112

step pipeline that comprise of an end-to-end trainable detection network and113

a post processing step. The work presented by [32, 33] named Textboxes,114
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adopts a modified version of a popular object recognition model named Single115

Shot Detector [34]. It employs modified anchor boxes to regress the ground116

truth boxes followed by a non-maximum suppression step (NMS). A per-117

formance focused approach is given by EAST [35], which upsamples feature118

maps gradually and uses [36] as the network backbone, and outputs a per119

pixel word or text line prediction followed by a NMS step.120

Inspired by the object detection framework proposed by R-CNN [37, 38, 39],121

ample research has been conducted. The common approach consists of a Re-122

gion Proposal Network (RPN) that produces candidate text regions, which123

later are passed through a pooling layer that classifies the region as text or124

not text. In the model presented by [40], rotated region proposals are pre-125

sented, mostly to handle arbitrary oriented text. Analogously, R2CNN [41]126

the Region of Interest(ROI) pooling stage uses different fixed sizes which are127

concatenated for regression and classification. The work conducted by [42]128

mainly focuses on adaptive weighted pooling in different scales to further129

predict and regress region proposals.130

2.2. Scene Text Recognition131

Initial approaches explored by Jaderberg et al. [43] tackle text recognition132

as a classification problem. After training a CNN on synthetic generated133

samples, the obtained features are used to predict a vector that classifies134

the input word over approximately 90,000 classes. After the introduction135

of the Connectionist Temporal Classification (CTC) by Graves et al. [44]136

in handwriting recognition, the same methodology has been widely used in137

scene text as well. The work proposed by [45] employs the CTC layer after138

passing the input image through a CNN that acts as the encoder and a RNN139
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that act as the decoder. The introduction of an attention mechanism was140

initially proposed by [46] in the task of machine translation. This mechanism141

was briefly adopted in several vision tasks, including text recognition. The142

work proposed by [47], namely Focus Attention Network, employs attention143

to supervise relevant locations for word recognition. Bai et al. [48] introduce144

an edit probability to handle the misalignment between the ground truth145

string and the attention output string. Jaderberg et al. [49] proposed the146

Spatial Transformer Network, which is used by [50] to align detected text147

horizontally to further employ an attention based recognizer.148

2.3. End-to-End Text Recognition149

A commencing approach proposed by Jaderberg et al. [23] employs a150

sliding window to extract proposals, which are filtered and a CNN is used to151

regress the bounding boxes. Later the filtered regions that surpass a threshold152

are classified. In another work, Gupta et al. [51] defined a Fully Convolu-153

tional Regression Network for text detection and bounding box regression154

and the same classification network proposed by [23] for text recognition,155

being one of the first models that were fully trainable based on deep learning156

methodologies solely. In [52] a YOLO[53] based CNN is adopted to detect157

text instances, which later are passed through a Connectionist Temporal158

Classification module for recognition. These two stages are trained sepa-159

rately and later connected together to form and end-to-end architecture.160

The research presented by [54]introduces a CNN that is used as an encoder161

and a Long Short-Term Memory (LSTM) along with an attention mecha-162

nism module as decoder, both employed for detection and recognition. He et163

al. [55] use a CNN to extract proposals, which are fed into an LSTM to refine164
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the bounding boxes that are later employed as input to yet another LSTM165

to perform recognition that fixes misalignment between attention maps and166

ground truth character labels. In more recent work, [56] uses EAST [35] to167

obtain text regions and employs a CTC recognition module [44] to obtain168

an end-to-end reading system. Lyu et al. [57] use a variation of Mask R-169

CNN[39] to detect text in arbitrary shapes and segment an image in different170

instances to recognize similar text regions.171

2.4. Scene Text Retrieval172

Closely related to our work, the scene text retrieval problem slightly dif-173

fers from classical scene text recognition methodologies. In a retrieval sce-174

nario the user defines a textual query which he wants to retrieve, whereas175

most of recognition approaches are based on employing a predefined vocab-176

ulary of the words one might come along within scene images. For instance,177

both Mishra et al.[22], who introduced the scene text retrieval task, and178

Jaderberg et al. [23], use a fixed vocabulary to create an inverted index179

which contains the presence of a word in the image. These approaches limit180

the freedom of queries to a set of predefined vocabulary words.181

To address such a problem, text string descriptors based on n-gram frequen-182

cies, like the PHOC descriptor (Figure 2), have been successfully used for183

word spotting applications [58, 27, 59]. By using a vectorial codification of184

text strings, users can query any string at inference time without being lim-185

ited to a specific set of predefined vocabulary words. In this work, we make186

use of the PHOC descriptor along with an object detection framework based187

on YOLO [25, 53] that encodes found text instances. We suggest that this188

approach brings many benefits, mostly due to the high recall and single shot189
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Figure 2: Pyramidal histogram of characters (PHOC) [27] of the word “convex” at levels
1, 2, and 3. The final PHOC representation is the concatenation of the partial one-hot
encodings.

calculation required to locate and recognize text contained within an image,190

accompanied by unmatched processing speeds.191

2.5. Other applications192

Fine-grained Classification is the task of classifying visually similar ob-193

jects in which subtle differences are key to find discriminative features be-194

tween classes. Finding these subtle features is a challenging task which keeps195

this problem as an active topic in computer vision. Karaoglu et al. [20]196

tackles this task by extracting visual features by employing a GoogleNet [60]197

and a feature of Bag of Words to represent the text instances found in an198

image and further classify them. More recently, [61] uses a similar approach199

and extracts the visual features using a GoogleNet [60] and a combination200

of two models: [32] to detect text and [45] to recognize text. The recognized201

text instances are represented by GloVe [62], which are later used with an202

attention mechanism on the visual features to classify the image.203

Additional work has explored other fields of scene understanding by employ-204

ing textual cues. The work proposed by [6] and [7] focuses on the Visual205

Question Answering (VQA) [63] task. The VQA problem consists in provid-206
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ing an answer to a given image and question presented in natural language.207

Providing the correct answer is possible only if the system is capable to208

leverage textual information contained in the image.209

3. Proposed Architecture210

The proposed architecture is based on a custom-built YOLOv2 object211

detection model introduced by [25, 26]. This work adapts the object detector212

to output a compact representation of the text instances and recast them as213

a PHOC [27], thus enforcing the model to learn to construct such a vectorial214

codification. The suggested model is kept as a Fully Convolutional Neural215

Network, and a straightforward diagram is illustrated in Figure 3.216

The convolutional neural network is composed of 22 convolutional layers217

with a leaky ReLu activation function after each convolution operation. The218

details of the proposed architecture can be seen in Table 1.219

Batch normalization is used after every convolutional layer to help the220

model reach convergence. In total the model employs 5 max pooling layers,221

which reduces the input width and height by a factor of 25. The filter size222

used in convolutions is 3 × 3 and the channel number is doubled after each223

pooling step as in previous works that adopt a VGG [64] model backbone224

such as the work presented by [45]. In order to apply dimensionality reduc-225

tion and decrease the computation cost, the strategy proposed by the usage226

of an Inception module [60] is taken, and filters of size 1× 1 are interleaved227

between the 3 × 3 convolutional filters to obtain richer feature maps. As228

it is defined in YoloV2 [26] and inspired in the Residual blocks introduced229

by [65], the convolutional backbone uses a pass-through layer from an earlier230
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Table 1: Detailed description of the proposed CNN architecture considering an input
image size of 608 x 608.

Layer Type Filters Size/Pad/Stride Output

0 Input - 608 x 608 x 3
1 Conv 32 3x3/p1/1 608 x 608 x 32
2 Max Pool 2x2/p0/2 304 x 304 x 32
3 Conv 64 3x3/p1/1 304 x 304 x 64
4 Max Pool 2x2/p0/2 152 x 152 x 64
5 Conv 128 3x3/p1/1 152 x 152 x 128
6 Conv 64 1x1/p0/1 152 x 152 x 64
7 Conv 128 3x3/p1/1 152 x 152 x 128
8 Max Pool 2x2/p0/2 76 x 76 x 128
9 Conv 256 3x3/p1/1 76 x 76 x 256
10 Conv 128 1x1/p0/1 76 x 76 x 128
11 Conv 256 3x3/p1/1 76 x 76 x 256
12 Max Pool 2x2/p0/2 38 x 38 x 256
13 Conv 512 3x3/p1/1 38 x 38 x 512
14 Conv 256 1x1/p0/1 38 x 38 x 256
15 Conv 512 3x3/p1/1 38 x 38 x 512
16 Conv 256 1x1/p0/1 38 x 38 x 256
17 Conv 512 3x3/p1/1 38 x 38 x 512
18 Max Pool 2x2/p0/2 19 x 19 x 512
19 Conv 1024 3x3/p1/1 19 x 19 x 1024
20 Conv 512 1x1/p0/1 19 x 19 x 512
21 Conv 1024 3x3/p1/1 19 x 19 x 1024
22 Conv 512 1x1/p0/1 19 x 19 x 512
23 Conv 1024 3x3/p1/1 19 x 19 x 1024
24 Conv 1024 3x3/p1/1 19 x 19 x 1024
26 Conv 1024 3x3/p1/1 19 x 19 x 1024
26 Concat[16] 38 x 38 x 512
27 Conv 64 1x1/p0/1 38 x 38 x 64
28 Concat[24,27] 19 x 19 x 1280
29 Conv 1024 3x3/p1/1 19 x 19 x 1024
30 Conv 7917 1x1/p0/1 19 x 19 x 7917

convolutional layer, which is concatenated and followed by a final 1× 1 con-231

volutional filter with a linear activation with the number of filters matching232

the desired output tensor size to encode the PHOC descriptor.233

Following the approach from the YOLOv2 model, we could define the234

word spotting task as a classification problem, where each detected word is a235

class. This one hot classification vector in the output tensor would represent236

the word class probability distribution among a defined list of words (fixed237

size dictionary) per each bounding box prediction. As simple as it sounds,238

such an approach limits the number of words that the model is able to rec-239

ognize. In principle, if such a model requires to recognize 20 words, it would240

theoretically perform as well as classifying the 20 object classes from the241

PASCAL dataset presented in [26]. However, the problem raises in complex-242
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Figure 3: Our Convolutional Neural Network predicts at the same time bounding box
coordinates x, y, w, h, an objectness score c, and a pyramidal histogram of characters
(PHOC) of the word in each bounding box.

ity as the number of classes grow. If we consider training such a model (e.g.243

the list of 90, 000 most frequent words from the English vocabulary [23]),244

the final convolutional layer would require 90, 000 filters. This factor would245

require an immense amount of data to successfully train such a model. Even246

though a model with such characteristics could be designed, the limitation247

of only recognizing words that belong to a predefined dictionary would still248

be present. Recognizing out of vocabulary words would require a special249

treatment or simply it would be a non-viable task. Furthermore, given the250

number of parameters required, the model size would be too big and the real251

time processing speed would most likely be lost.252

A way of addressing the aforementioned problems, specifically a model that is253

able to generalize and recognize previously unseen words, is desired. This is254

the main driving rationale behind casting the network as a PHOC predictor,255

which also permits to decrease the model’s last filter size, thus allowing it256

to perform at real-time. The PHOC [27] descriptor is a multi-level vectorial257

representation of text strings that focuses on encoding if a specific character258
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is present in a defined spatial region of a string (see Figure 2). Intuitively,259

a CNN based model that effectively learns to predict the PHOC represen-260

tation of a detected word will inherently learns to identify the existence of261

a specific character in a visual region of the proposed bounding box. The262

model therefore will learn to construct the PHOC by automatically learn-263

ing character attributes independently. Learning how to construct such a264

representation given the morphology of a string allows the proposed model265

to transfer knowledge acquired at training time and employ it at inference266

time to build PHOCs of unseen words. This effect is possible due to the fact267

that the presence of a character at a particular locality of the word trans-268

lates to the same information in the PHOC representation, independently of269

the positioning or existence of other characters in the word. Moreover, the270

PHOC descriptor acts as a universal encoding scheme that offers unlimited271

expressiveness as it can represent any word constrained only by a language272

specific alphabet.273

The PHOC version we propose in this work, contains a fixed length of274

604 dimensions represented as a binary vector.275

In order to adapt the YOLOv2 object detection network for single shot276

detection and PHOC prediction, it is necessary to define the nature of the277

proposed descriptor. In the first place, the PHOC descriptor does not resem-278

ble a one hot vector as in a classification scheme. To treat the PHOC as a279

multi-hot binary vector, the last layer does not employ a softmax function.280

Secondly, the prediction of a PHOC vector is comprised of a set of numbers281

that satisfy the condition given by:282
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S = {x|x ∈ R, 0 6 x 6 1} (1)

Where S represents the set of possible PHOC values. In order to have283

such a representation, a sigmoid activation function after the last convolu-284

tional layer is used to predict the PHOC vectors rather than the original285

softmax function.286

Thirdly, we modify the original YOLOv2 Loss Function to facilitate the con-287

vergence and learning process of the model. As it is presented in the original288

YOLOv2 paper, the proposed algorithm is trained with the following multi-289

part loss function:290

L(b, C, c, b̂, Ĉ, ĉ) = λboxLbox(b, b̂) + Lobj(C, Ĉ, λobj, λnoobj) + λclsLcls(c, ĉ) (2)

where b is a vector with coordinates’ offsets to an anchor bounding box, C is291

the probability of that bounding box containing an object, c is the one hot292

classification vector, and the three terms Lbox, Lobj, and Lcls are respectively293

independent losses for bounding box regression, objectness estimation, and294

classification. All the aforementioned losses are essentially the sum-squared295

errors of ground truth (b, C, c) and predicted (b̂, Ĉ, ĉ) values. At the moment296

of predicting a PHOC, c (the ground truth) is a binary vector and ĉ (pre-297

diction) meets the condition stated in 1, reason to opt for cross-entropy loss298

function in Lcls as in a multi-label classification task:299

Lcls(c, ĉ) = c log ĉ+ (1− c) log(1− ĉ) (3)

It is important to note that the combination of the sum-squared errors300
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Lbox and Lobj with the cross-entropy loss Lcls is controlled by the scaling301

parameters λbox, λobj, λnoobj, and λcls.302

Apart from the modifications made so far on top of the original YOLOv2303

architecture we also changed the number, the scales, and the aspect ratios304

of the pre-defined anchor boxes used by the network to predict bounding305

boxes. Similar to [25], we have found the ideal set of anchor boxes B for our306

training dataset by requiring that for each bounding box annotation there307

exists at least one anchor box in B with an intersection over union of at least308

0.6. Figure 4 illustrates the 13 bounding boxes found to be better suited for309

our training data and their difference with the ones used in object detection310

models.311

a) b) c)

Figure 4: Anchor boxes used in the original YOLOv2 model for object detection in COCO
(a) and PASCAL (b) datasets. (c) Our set of anchor boxes for text detection.

At test time, our model provides a total of W/32 × H/32 × 13 bound-312

ing box proposals, with W and H being the image input size, each one of313

them with an objectness score (Ĉ) and a PHOC prediction (ĉ). The original314

YOLOv2 model filters the bounding box candidates with a detection thresh-315

old τ considering that a bounding box is a valid detection if Ĉmax(ĉ) ≥ τ . If316
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the threshold condition is met, a non-maximal suppression (NMS) strategy317

is applied in order to get rid of overlapping detections of the same object. In318

our case the threshold is applied only on the objectness score (Ĉ) but with319

a much smaller value (τ = 0.0025) than in the original model (τ ≈ 0.2), and320

we do not apply NMS. The reason is that any evidence of the presence of a321

word, even if it is small, it may be beneficial in terms of retrieval if its PHOC322

representation has a small distance to the PHOC of the queried word. With323

this threshold we generate an average of 50 descriptors for every image in324

the dataset and all of them form our retrieval database.325

In this way, the scene text retrieval of a given query word is performed326

with a simple nearest neighbor search of the query PHOC representation over327

the outputs of the CNN in the entire image database. While the distance328

between PHOCs is usually computed using the cosine similarity, we did not329

find any noticeable downside on using an Euclidean distance for the nearest330

neighbor search.331

3.1. Training details332

We have trained our model in a modified version of the synthetic dataset333

of Gupta et al.[51]. First the dataset generator has been evenly modified334

to use a custom dictionary with the 90K most frequent English words, as335

proposed by Jaderberg et al.[23], instead of the Newsgroup20 dataset [66]336

dictionary originally used by Gupta et al.. The rationale was that in the337

original dataset there was no control over the word occurrences, and the338

distribution of word instances had a large bias towards stop-words found in339

newsgroups’ emails. Moreover, the text corpus of the Newsgroup20 dataset340

contains words with special characters and non ASCII strings that we do341
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Figure 5: Synthetic training data generated with a modified version of the method of
Gupta et al. [51]. We make use of a custom dictionary with the 90K most frequent
English words, and restrict the range of random rotation to 15 degrees.

not contemplate in our PHOC representations. Finally, since the PHOC342

representation of a word with a strong rotation does not make sense under343

the pyramidal scheme employed, the dataset generator was modified to allow344

rotated text up to 15 degrees. This way we generated a dataset of 1 million345

images for training purposes. Figure 5 shows a set of samples of our training346

data.347

The model was trained for 30 epochs of the dataset using SGD with348

a batch size of 64, an initial learning rate of 0.001, a momentum of 0.9,349

and a decay of 0.0005. We initialize the weights of our model with the350

YOLOv2 backbone pre-trained on Imagenet. During the firsts 10 epochs351

we train the model only for word detection, without backpropagating the352

loss of the PHOC prediction and using a fixed input size of 448 × 448. On353

the following 10 epochs we start learning the PHOC prediction output with354

the λcls parameter set to 1.0. After that, we continue learning for 10 more355

epochs with a learning rate of 0.0001 and setting the parameters λbox and λcls356

to 5.0 and 0.015 respectively. At this point we also adopted a multi-resolution357

training, by randomly resizing the input images among 14 possible sizes in the358

range from 352×352 to 800×800, and we added new samples in our training359

18



data. In particular, the added samples were the 1, 233 training images of the360

ICDAR2013 [24] and ICDAR2015 [13] datasets. During the whole training361

process we used the same basic data augmentation as proposed by [25].362

4. Experiments and results363

In this section we present the experiments and results obtained on differ-364

ent standard benchmarks for text based image retrieval. First, we describe365

the datasets used throughout our experiments and after that, we present366

our results and compare them with the published state-of-the-art. As an367

extension to our previous work [29], an assessment when dealing with out-of-368

vocabulary words is conducted by analyzing the model in two multi-lingual369

datasets. Additionally, we conduct robustness experiments when confronted370

with imperfect image conditions, which further shows our models’ poten-371

tial. Finally, we present a real-time text spotting application in videos, only372

possible by the characteristic speed capability of our method.373

4.1. Datasets374

4.1.1. IIIT Scene Text Retrieval (STR)375

The STR dataset [22] is a scene text image retrieval dataset composed376

of 10, 000 images collected from the Google image search engine and Flickr.377

The dataset has 50 predefined query words and for each of them a list of378

10 − 50 relevant images (that contain the query word) is provided. It is379

a challenging dataset where relevant text appears in many different fonts380

and styles, and from different view points, among many distractors (images381

without any text).382
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4.1.2. IIIT Sports-10k dataset383

The Sports-10k dataset [22] is another scene text retrieval dataset com-384

posed of 10, 000 images extracted from sports video clips. It has 10 pre-385

defined query words with their corresponding relevant images’ lists. Scene386

text retrieval in this dataset is specially challenging because images are low387

resolution and often noisy or blurred, with small text generally located on388

advertisements signboards.389

4.1.3. Street View Text (SVT) dataset390

The SVT dataset [67] is comprised of images harvested from Google Street391

View where advertisement signboards is present. It contains more than 900392

words annotated in 350 different images. In our experiments we use the393

official partition that splits the images in a train set of 100 images and a394

test set of 249 images. This dataset also provides a lexicon of 50 words per395

image for recognition purposes, but we do not make use of it. For the image396

retrieval task we consider as queries the 427 unique words annotated on the397

test set.398

4.1.4. Multi-lingual scene text (MLT) datasets399

These two datasets MLT2017 [68] and MLT2019 [69] are scene text de-400

tection and recognition datasets that contain 7, 200 and 10, 000 images re-401

spectively in 10 different languages (Chinese, Japanese, Korean, English,402

French, Arabic, Italian, German, Bangla and Hindi) in equal proportions,403

representing 7 different scripts. These datasets mostly comprises focused404

text in natural images, and even though the main task is text detection and405

recognition, we adapted it to conduct text retrieval experiments. We employ406

this dataset to assess the generalization power of the PHOC representation407
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of unseen words at training time.408

4.1.5. Text in videos (TiV) dataset409

The TiV dataset [70] contains 25 videos (13450 frames in total) and a test410

set of 24 videos (14374 frames in total) recorded from 4 different cameras.411

We use this dataset to asses the performance at real-time of our model at412

the moment of retrieving a specific text query. The challenge in this dataset413

remains in the fact that usually video frames contain a lower quality when414

compared to static images. The problems of text spotting usually relate to415

rotation, blur and occlusion of text found on each frame due to movement416

and focusing issues while including loss of information at the moment of video417

compression.418

4.2. Scene text retrieval419

In the scene text retrieval task, the goal is to retrieve all images that con-420

tain instances of the query words in a dataset partition. Given a query, the421

database elements are sorted with respect to the probability of containing422

the queried word. We use the mean average precision as the accuracy mea-423

sure, which is the standard measure of performance for retrieval tasks and424

is essentially equivalent to the area below the precision-recall curve. Notice425

that, since the system always returns a ranked list with all the images in the426

dataset, the recall is always 100%. An alternative performance measure con-427

sist in considering only the top-n ranked images and calculating the precision428

at this specific cut-off point (P@n).429

Table 2 compares the proposed method to previous state of the art for430

text based image retrieval on the IIIT-STR, Sports-10K, and SVT datasets.431

We show the mean average precision (mAP) and processing speed for the432
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same trained model using two different input sizes (576×576 and 608×608),433

and a multi-resolution version that combines the outputs of the model at434

three resolutions (544, 576 and 608). Processing time has been calculated435

using a Titan X (Pascal) GPU with a batch size of 1. We appreciate that436

our method clearly outperforms previously published methods in two of the437

benchmarks while it shows a competitive performance on the SVT dataset. It438

is important to witness that our method achieves the highest measurements439

in frames per second (fps), leading to the the best overall trade-off between440

performance and processing speed in all datasets. Table 3 further compares441

the proposed method to previous state of the art by showcasing the precision442

at 10 (P@10) and 20 (P@20) on the Sports-10K dataset.443

Figure 6: Bounding box heat-maps for queried words ”honda”, ”police”, ”tea” and ”sony”
respectively.

In Figure 6, we depict the heat-maps of our model by calculating the444

closests matching PHOC and its bounding box in relation to a given query.445

As it can be seen on the showcased figure, several predicted PHOCs closely446

match the queried word. Considering the implementation details defined447

in the previous section, we avoid using a NMS post processing strategy to448

preserve high matching PHOC proposals that could be discarded otherwise.449

For a further analysis of the errors made by our model we have manually450
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Table 2: Comparison to previous state of the art for text based image retrieval: mean
average precision (mAP) for IIIT-STR, and Sports-10K, and SVT datasets. (*) Results
reported by Mishra et al. in [22], not by the original authors. (†) Results computed with
publicly available code from the original authors.

Method STR
(mAP)

Sports
(mAP)

SVT
(mAP)

fps

SWT [71]+ Mishra et al. [72] - - 19.25
Wang et al. [67] - - 21.25*
TextSpotter [73] - - 23.32* 1.0
Mishra et al. [22] 42.7 - 56.24 0.1
Ghosh et al. [74] - - 60.91
Mishra [75] 44.5 - 62.15 0.1
Almazán et al. [27] - - 79.65
TextProposals [76] + DictNet [43] 64.9† 67.5† 85.90† 0.4
Jaderberg et al. [23] 66.5 66.1 86.30 0.3
Bušta et al.[77] ICCV 2017 62.94 59.62 69.37 44.21
He et al.[55] CVPR 2018 50.16 50.74 72.82 1.25

He et al.[55] (With dictionary) 66.95 74.27 80.54 2.35

He et al.[55] (PHOC) 46.34 52.04 57.61 2.35

Proposed (576× 576) 68.13 72.99 82.02 53.0
Proposed (608× 608) 69.83 73.75 83.74 43.5
Proposed (multi-res.) 71.37 74.67 85.18 16.1

inspected the output of our model as well as the ground truth for the five451

queries with a lower mAP on the IIIT-STR dataset: ”ibm”, ”indian”, ”insti-452

tute”, ”technology” and ”sale”. In most of these queries the low accuracy of453

our model can be explained in terms of having only very small and blurred454

instances in the database. In the case of ”ibm”, the characteristic font type455

in all instances of this word tends to be ignored by our model, and the456

same happens for some computer generated images (non scene images) that457

contain the word ”sale”. Figure 7 shows some examples of those instances.458
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Table 3: Comparison to previous state of the art for text based image retrieval: precision
at n (P@n) for Sports-10K dataset.

Method Sport-10K (P@10) Sport-10K (P@20)

Mishra et al. [22] 44.82 43.42
Mishra [75] 47.20 46.25
Jaderberg et al. [23] 91.00 92.50

Proposed (576× 576) 91.00 90.50
Proposed (multi-res.) 92.00 90.00

Figure 7: Error analysis: last ranked images for queries ”sale”, ”ibm”, ”indian”, ”insti-
tute”, ”technology” and ”police”. Most of the errors made by our model come from text
instances with a particular style, font type, size, etc. that is not well represented in our
training data.

The analysis indicates that while our model is able to generalize well for459

text strings not seen at training time it does not perform properly with text460

styles, fonts, sizes not seen before. Our intuition is that this problem can be461

alleviated with a richer training dataset.462

4.3. Multi-Lingual Scene Text Retrieval463

As an extension to our previous work [29], we focus on analyzing the464

generalization capability of the proposed model. It becomes essential to note465

that designing an algorithm that learns to construct a compact representa-466

tion of a string, such as the PHOC, paves the road to further development of467

models that are not constrained to a fixed dictionary or training data sam-468

ples. In order to assess the expressiveness of our architecture, we make use469
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of two Multi-lingual datasets 2017 [68] and 2019 [69] in which we can easily470

find out-of-vocabulary words (text not seen at training time) with different471

distributions and characteristics. These datasets are used by the research472

community to perform text detection and recognition tasks, but not text473

based image retrieval. Therefore, we have selected a set of 100 queries for in-474

vocabulary experiments and another set of 100 queries for out-of-vocabulary475

experiments for each dataset taken from the training split. Out-of-vocabulary476

queries are selected by choosing the latin words with most occurrences af-477

ter removing stop-words and words that contain non-alphanumeric charac-478

ters. For in-vocabulary queries, we also remove stop-words and words with479

non-alphanumeric characters before searching for latin words with similar480

frequencies to the out-of-vocabulary queries.481

Table 4: Comparison to previous state of the art method for text based image retrieval
methods when queries are words already seen during the training process (IV) or not
(OOV): mean average precision (mAP)

MLT 2017 MLT 2019

Method IV OOV IV OOV

He et al. [55] 24.79 19.47 27.6 24.99
Proposed 46.52 46.87 46.41 46.03

Table 5: Comparison to previous state of the art method for text based image retrieval
methods when queries are words already seen during the training process (IV) or not
(OOV): precision at n (P@n)

MLT 2017 MLT 2019
IV OOV IV OOV

Method P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20

He et al. 0.51 0.37 0.22 0.46 0.33 0.20 0.62 0.44 0.27 0.60 0.40 0.23
Proposed 0.77 0.57 0.34 0.78 0.59 0.34 0.80 0.64 0.41 0.80 0.64 0.40

Tables 4 and 5 show the ability for our model to perform retrieval with482
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the same accuracy for in-vocabulary queries and out-of-vocabulary queries in483

both datasets. As we stated previously, this is because our model is learning484

how to build a PHOC from text rather than performing a classification along485

a fixed dictionary. It is important to note that our model performs signifi-486

cantly better than a state of the art reading system presented by [55] at the487

text retrieval task. Additionally, the method from [55] was trained using the488

dictionary from [66] which contains English words, thus performing poorly489

when dealing with out of vocabulary words mostly belonging to different lan-490

guages. Figure 8 shows the top-5 ranked images for the queries ”vodafone”491

in IIIT-STR dataset, ”uscita” (italian) in MLT 2017 and ”werden” (german)492

in MLT 2019, all of them being unseen samples at training time. In all of493

them our model reaches a 100% precision at 5.494

Figure 8: From top to bottom, top-5 ranked images for the queries “vodafone”, “uscita”,
“werden”. Although our model has not seen these words at training time it is able to
achieve a 100% P@5 for all of them.
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4.4. Robustness of the Model495

In the following subsection, experiments to determine the robustness of496

the model to imperfect conditions are performed. Experiments regarding497

rotation, blur, compression and occlusion are analyzed.498

Figure 9: Robustness performance for imperfect conditions such as rotation, blur, com-
pression and occlusion.

4.4.1. Rotation499

A big difference between text found in documents and text in natural500

imagery is the arbitrary orientation text may have. Rotated and arbitrary501

shaped text instances are one of the main problems in the research com-502

munity. Challenges such as the one presented in [78] remains as an open503

problem and an active field, in which the task is far from being a trivial one.504

Experiments to assess the model performance and robustness towards rota-505

tion were conducted. Each image from the analyzed datasets was rotated by506

a specific angle starting at 0◦ to 90◦ in steps of 5◦, clockwise and counter507

clockwise. The images were rotated by considering the center of the image508

as the reference point as it is show in Figure 10. Bi-linear interpolation was509

used in order to avoid losing information and padding was used in order to510

avoid cutting-off sections that contain text in an image.511
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Figure 10: From left to right, qualitative rotated sample image at 0◦, 20◦, 40◦, 60◦ and 80◦

taken from SVT dataset. Spatial positioning of characters is lost at high rotation angles,
thus decreasing the model capability of constructing the PHOC representation.

As it can be seen in Figure 9, the greater the rotation angle is applied512

in the image, the performance of the model decreases. The rotation effect is513

amplified in the IIIT-STR dataset due to the fact that it already contains514

text in different orientations when compared to the more stable and horizon-515

tal text occurrences found in the remaining two datasets. It is worth noting516

that the proposed model was trained employing a synthetic dataset that in-517

cluded rotated words up to an angle of 15 degrees. This effect is perceived by518

noticing a significant decrease in performance (increase in gradient) when-519

ever an image is rotated more than 25 degrees. Another fact that decreases520

the rotation performance in angles that approach to 90◦ is the shape of the521

predefined anchor boxes (Figure 4 c.), which possess a shape that mostly522

captures horizontal text. The orientation of text is key at the moment of523

building the PHOC representation of a word. This representation is con-524

structed by considering spatial information of each character contained in a525

string, which is heavily affected by rotated words contained in an image.526

4.4.2. Blur527

Blur in text is a common issue in incidental images [13] as well as in video528

frames, specially on videos that contain rapid camera movement, fast scene529

transitions and not professional cameras. Different kernel sizes of Gaussian530
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blur are employed to assess the proposed model performance, implemented by531

using [79]. As it can be seen in the qualitative results depicted in Figure 11,532

humans will not have a difficult time recognizing most of the text occurrences533

in blurred images. Blur is a particularly big problem in the Sports-10K534

dataset, which due to its nature, video frames depicted already contain blurry535

text. Gaussian blur augments this issue, thus a sharp decrease in performance536

is noted when compared to the remaining datasets, see Figure 9. Further537

strategies of data augmentation with blurred images or de-blurring techniques538

as presented by [80] can be used as an additional step before inference time.539

Figure 11: Increasing Gaussian blur in a sample image taken from IIIT-STR dataset. Fine
features that differentiate characters are lost, thus affecting the ability of the proposed
model to recognize a word.

4.4.3. Compression540

Compression in images and video can severely degrade the image qual-541

ity, thus affecting subtle details that impact the performance of deep nets.542

In order to simulate real life compression issues, different lossy compression543

qualities were employed to downgrade images in the proposed datasets by us-544

ing the JPEG compression algorithm. The perception in quality degradation545

is not linear, thus more emphasis was placed in extreme scenarios (low com-546

pression qualities). The compression method used was taken from the public547

implementation from [79] and different quality values were employed. As it548

can be seen in the qualitative results depicted in Figure 12, changes in quality549
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above the value of 25 are barely noticeable by human perception alone. De-550

spite this fact, as it can be seen in Figure 9, our model achieves a comparable551

performance with previous state of the art methods depicted in Table 2 even552

when the input image belongs to a low quality compression range. It is worth553

pointing out that for quality values of 20 and above the performance gradient554

tends to decrease making the performance grow slowly until achieving state555

of the art reported values in images with a higher compression quality. Sim-556

ilarly to the blur problems encountered in previous section, the Sports-10K557

dataset is the most susceptible to low image qualities, due to the collecting558

process of this dataset at the moment of extracting frames from video.559

Figure 12: Increasing compression quality from left to right (1, 4, 8, 25, 75) in sample
image from SVT dataset. At low qualities text at small scales is barely legible. Despite
this effect, our model achieves state of the art level performance at qualities bigger than
20.

4.4.4. Occlusion560

An ongoing challenge in the scene text reading community is occlusion, as561

it can entirely modify the morphology of spotted text. Humans are less prone562

to occlusion problems, due to prior knowledge of the context of an image or563

by the existing familiarity towards a specific language. In our experiments,564

three scenarios were proposed according to the position of the occlusion,565

namely at the beginning, middle and end of a word. These experiments were566

conducted only in the SVT dataset because it was the only one that already567
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contained bounding box labels. The occlusion was generated by extreme568

blurring of a given percentage of the area that contains text in an image.569

The percentages of occlusion employed were half, one third, one fourth and570

one fifth of the total bounding box area, some qualitative samples can be571

seen in Figure 13. Not all text occurrences in a given image are occluded,572

because there are words that do not contain any ground truth annotations573

provided in the SVT dataset. As it can be seen in Figure 9, when the574

occlusion is located at the beginning and end of a word the model achieves575

a similar performance which slowly decreases as the occluded area grows.576

The model learns to build the PHOC of the occluded word, and successfully577

retrieves the closest matching representation. This outcome can be seen578

in Figure 14, in which the model successfully retrieves ocludded images for579

the query ”adidas”. However, when the occlusion affects the center of a580

word, the model achieves a lower performance at the moment of retrieving581

a specific query. This outcome can be easily explained because the detected582

text is treated as two different word occurrences, thus generating different583

proposals that actually belong to the same word.584

Figure 13: Occlusion samples. From left to right: occlusion located at the beginning of the
image occupying 1/3 of the total bounding box area, occlusion at the beginning involving
1/5, occlusion at the middle filling 1/3, and occlusion at the end covering 1/3 and 1/5 of
the total bounding boxes area respectively.
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Figure 14: Images within the top 10 ranked images for the query ”adidas”. Our model
successfully retrieves partially occluded and blurred words.

4.5. Real-time Text Spotting in Videos585

Given the high processing frame-rates that we achieve (c.f. Table 2),586

we can use the proposed method for spotting text in video streams in real587

time. Such application might be interesting in scenarios like assistance to588

driving systems, in order to spot certain words in the open world, or to track589

advertisement exposure in sports broadcasting. In such cases, the user casts590

a textual query that has to be sought within videos. We shall take into591

account that video recorded in natural scenes contain text instances that592

are extremely susceptible to imperfect conditions. Low quality of recording593

devices and rapid camera movement tends to produce blurred and rotated594

content. Text found in video is also vulnerable to unintended occlusions that595

affect several consecutive frames. In order to test the performance of the596

proposed method in such scenario, we have used the Text in Videos challenge597

dataset [24], in which the train partition consists of 25 videos, 13.450 frames598

in total, with their corresponding ground-truth annotation. We decided to599

use as queries the 20 words having more than three letters that have more600

occurrences in the dataset. Having set a threshold on the distance between601

the query PHOC representation and the closest word hypothesis in each602

frame, we decide whether the queried word appears or not in that frame.603

We evaluate the text spotting in videos task by using the F-score, so that we604
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Table 6: Top 15 most frequent words with their number of occurrences and the reached
F-score.

Query Occurrences F-score

flor 539 94.05
Marie 426 83.89
Renfe 314 78.26
createurs 303 72.40
Dixan 278 87.54
FONTANEDA 261 84.44
VOTRE 257 91.01
Digestive 254 90.00
USHIP 245 75.35
ACCASTILLEUR 241 66.26
Applus 237 91.96
Rectorat 237 88.96
CONSEIL 230 83.18
mundi 230 85.24
Accastillage 199 61.41
MISTOL 186 57.51

Average − 76.70

penalize both missing frames where the query word appears and false positive605

frames. Overall we achieved an F-score of 76.70, and we provide some results606

for the topmost 15 queries in Table 6. Video demos are available in our public607

repository1.608

5. Conclusions609

In this work, we presented a real-time performing word spotting method,610

based on a fully convolutional neural network that allows to detect and rec-611

ognize text in a single calculation which yields real-time processing capa-612

1https://github.com/lluisgomez/single-shot-str
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bility. The introduced model significantly improves previous state of the613

art results on the scene text retrieval task on the IIIT-STR and Sports-10K614

dataset while obtaining comparable results to the state of the art in the SVT615

Dataset. Moreover, it can do so achieving speeds 50× to 150× speed com-616

pared to other state of the art methods, which opens up the possibility of617

employing this model for real time scenarios, such as video, and indexing618

large scale databases.619

Importantly, it has been shown that the proposed method is able to con-620

struct a compact vectorial representation of out of dictionary queries at in-621

ference time, while keeping the performance at words previously seen at622

training. Achieving this result is possible by employing the PHOC as a word623

representation instead of tackling the task as a direct word classification.624

The method showcased is able to generalize unseen samples in a robust and625

efficient way, as the evidence strongly points out in experiments performed626

in a multilingual dataset. Additionally, the model proves to be robust at627

dealing with highly compressed images and text samples with occlusions at628

the beginning and at the end of a word. However, large rotation angles still629

present a problem which can be tackled by synthesizing training data with630

different characteristics and by using different priors when defining anchor631

boxes. Additional future work can be conducted to investigate the use of632

word embeddings that exploit the morphology of a word other than PHOC.633

The code, pre-trained models, data and demo videos used in this work are634

publicly available at https://github.com/lluisgomez/single-shot-str.635

636
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