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Abstract

Sequence-to-sequence models have recently become very popular for tackling

handwritten word recognition problems. However, how to effectively integrate

an external language model into such recognizer is still a challenging problem.

The main challenge while training a language model is to deal with the language

model corpus which is usually different to the one used for training the hand-

written word recognition system. Thus, the bias between both word corpora

leads to incorrectness on the transcriptions, providing similar or even worse

performances on the recognition task. In this work, we introduce Candidate

Fusion, a novel way to integrate an external language model to a sequence-

to-sequence architecture. Moreover, it provides suggestions from an external

language knowledge, as a new input to the sequence-to-sequence recognizer.

Hence, Candidate Fusion provides two improvements. On the one hand, the

sequence-to-sequence recognizer has the flexibility to not only combine the in-

formation from itself and the language model, but also choose the importance

of the information provided by the language model. On the other hand, the

external language model has the ability to adapt itself to the training corpus

and even learn the most common errors produced from the recognizer. Finally,

by conducting comprehensive experiments, the Candidate Fusion proves to out-

perform the state-of-the-art language models for handwritten word recognition
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tasks.
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1. Introduction

Handwritten word recognition is the computer vision task that provide com-

puters the ability to read handwritten text from images. Handwritten content

is found in volume in both historic document collections [1], but also on current

administrative documents [2] such as invoices, tax forms, notes, accident claims,5

etc. Automatic reading systems are particularly interesting for document digi-

tization processes where paper documents are converted into machine encoded

text. The information contained in such converted documents can be thus lever-

aged and used in any computer application, such as automatic decision making

processes, document classification, automatic routing, etc. Unlike the recog-10

nition of typewritten text, handwritten word recognition is still a challenging

research problem because of the large variability across different handwriting

styles [3]. In the last few years, with the rise of deep learning architectures,

some handwritten word recognition applications have started to reach a satis-

fying performance in some specific and restricted use cases [4, 5]. However, we15

are still far away from having a generic and robust system able to read any

handwritten text.

Automatic decoding textual information in images have several particulari-

ties. On the one hand, text is sequential in nature, coming in left to right order

in latin languages. Most of the state of the art approaches are based on recur-20

rent architectures [6] for leveraging this sequential information. On the other

hand, text follows a particular set of syntactic rules and presents a well defined

morphological structure. Text recognition systems often integrate statistical

language models [7] that are able to complement the optical part boosting the

overall recognition performance. Language models for handwritten word recog-25

nition implemented as probability distributions over sequences of characters and
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words, aim to provide context to discern between sequences of characters that

might look similar, intending to resolve ambiguities from the optical recognition

part. Different language model approaches have been proposed in the literature,

from n-grams [8] to neural network architectures [9].30

However, in most of the state-of-the-art handwritten word recognition sys-

tems, including the recent sequence-to-sequence-based ones [10, 11], the optical

recognition part and the language models are seen as two separate and indepen-

dent modules that are trained separately. Each of those modules are optimized

separately using different data corpora, images of handwritten text on the one35

side, and a separate text corpora used to train the language statistics on the

other. At the inference time, both modules are combined together. In that

sense, language models are used either as a post-processing step, aiming at cor-

recting recognition errors with the most likely sequence of characters [12], or as

an integrated guiding module, steering the decoding process towards the best40

fitting letter succession [13].

In this paper we present a novel sequence-to-sequence-based handwriting

recognition architecture that integrates the language model within the recog-

nizer. Since the language model and the optical recognition parts are jointly

trained and optimized, the language model does not just encode statistics about45

the language, but also models the most commonly produced errors from the op-

tical decoder and how to correct them.

The handwriting word recognition architecture proposed in this paper signif-

icantly extends our preliminary work [11] by integrating a language model step

within a sequence-to-sequence architecture. By incorporating the use of syn-50

thetic fonts and data augmentation strategies, we demonstrate the effectiveness

and generality of our proposed approach in a significant amount of different pub-

lic datasets and real industrial use cases. We exemplify in Figure 1 the different

transcription results that we are able to obtain with the proposed architecture.

The rest of the paper is organized as follows. In Section 2, the state-of-55

the-art in handwritten word recognition is discussed. In Section 3, we present

the data augmentation and pre-training processes leveraging the use of syn-
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Syn. hesporuaklly enterr ma eeree RAlexiin foure
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↓ ↓ ↓ ↓ ↓ ↓

+LM responsible century im remain réflexion faire

Figure 1: The improvements of performance from pre-training on only synthetic data, fine-

tuning on training set of target dataset, to joint training with our proposed external language

model, which are shown from top to bottom respectively indicating by arrows. The examples

are from IAM, GW and Rimes datasets with two images per each from left to right respectively.

thetic handwriting-looking data. In Section 4, our attention-based sequence-to-

sequence model for handwritten word recognition is described. In Section 5, we

will focus on the proposed candidate fusion language model, while comparing it60

to two popular language models. In Section 6, the datasets, the full experimen-

tal setup, the ablation study, and the results on popular handwriting datasets

are discussed in detail. Lastly, the conclusion is given in Section 7.

2. Related Work

Recognizing handwritten text has typically been addressed by combining65

computer vision and sequence learning techniques. The first handwritten word

recognition approaches were based on Hidden Markov Models (HMMs) [14].

Such approaches used to be successful pioneers, while nowadays, they have been

outperformed by Neural Networks-based architectures. With the rise of neural

networks, Recurrent Neural Networks (RNNs) [15] have started to become popu-70

lar to deal with sequential data such as handwriting. For example, Bidirectional

Long Short-Term Memory (BLSTM) [16] or Multidimensional Long Short-Term

Memory (MDLSTM) [17] have been widely adopted by handwritten word recog-

nition community. Lately, these models have been discussed and improved. For

example, Puigcerver [6] compared 1D-LSTM and 2D-LSTM layers to prove that75

4



multidimensional recurrent layers may not be necessary to achieve good accu-

racy for handwritten word recognition. Toledo et al. [18] provided an approach

that combined character embeddings with a BLSTM decoding. Most of the

handwritten word recognition approaches today are based on the use of a re-

current network with Connectionist temporal classification (CTC) layers [19].80

However, CTC has two main drawbacks: First, the length of predicted sequence

has always to be smaller than that of input sequence features. Thus, the number

of pooling layers need to be carefully chosen in the CNN module of the encoder,

so that the minimum width of image features would not be shorter than the

maximum number of predicted characters. Second, the number of decoding85

time steps is dependent of input sequence features, i.e., the longer input hand-

written image is, the longer the number of decoding time steps will be. Contrary,

the number of decoding time steps is exactly the same as the maximum number

of predicted characters in sequence-to-sequence-based approaches, because the

attention mechanism could deal with the variable length visual features.90

Recently, inspired by machine translation [20], speech recognition [21] and

image captioning [22], the sequence-to-sequence architecture [10, 11] has started

to be applied into handwritten word recognition tasks. These sequence-to-

sequence approaches follow the architecture of encoder, decoder and attention

mechanism. They present the advantage that by decoupling encoder and de-95

coder, the output size is not determined by the input image width, so that

the use of CTC can be avoided. For example, Sueiras et al. [10] provided a

sequence-to-sequence based handwriting recognizer, but they imposed a manu-

ally set sliding-window. Our previous work [11] analyzed various strategies to

find a proper sequence-to-sequence based architecture for specifically targeting100

handwritten word recognition tasks.

With the usage of RNNs, an implicit language model has been proved to

help the recognition process in [23]. However, this internal language model is

overfitted on the text of the training dataset. Among the popular handwritten

dataset [24], there is a gap between training set and test set not only in the105

sense of handwriting styles, but also in the sense of text corpus. The main
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role of an external language model is to provide the knowledge learnt from an

external text corpus, so that it can help to correct common errors made by the

recognizer.

However, these sequence-to-sequence based handwriting recognizers do not110

integrate a language model in the whole system. Since the age of HMMs, there

have been plenty of researches on the usage of linguistic knowledge to assist a

HMM-based handwriting recognition process [25]. Later on, as the RNN-CTC

model became the state-of-the-art on handwritten word recognition tasks, how

to effectively integrate a language model into a recognizer has been a hot topic115

concurrent with the development of a handwriting recognizer. For instance [26,

27, 28, 6] have integrated character n-grams language modelling into a RNN-

CTC based handwriting recognizer. Jelinek et al. [29] provided a cache trigram

language model, which can be adapted to the current document more closely.

Della et al. [30] proposed a minimum discrimination information model to adapt120

n-gram language model to a document. However, the n-gram model is just

statistics on the co-ocurrence of characters computed over a text corpus and,

even if they are helpful as an error-correcting post-processing step, they do not

represent inherent language knowledge.

More recently, a Bert-like language model [31], pre-trained on plain text for125

masked word prediction and next sentence prediction tasks, has achieved state-

of-the-art performance in many natural language understanding tasks. Zhu et

al. [32] propose a method to incorporate Bert into machine translation architec-

ture, which is a good trial to utilize a powerful pre-trained LM with a sequence-

to-sequence model. However, Bert-like LM works at word- or wordpiece-level,130

which are restricted to a closed vocabulary so as to fail to predict OOV words.

Moreover, since a Bert-like LM is trained and evaluated in parallel, it loses the

sequential feature that can be split and injected into a Seq2Seq recognizer at

each time step.

Concurrently, Recurrent Neural Network Language Models (RNNLM) [13,135

12] have been developed prosperously among machine translation and speech

recognition communities, because they can learn an effective representation of
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variable length characters and memory a long enough character history, outper-

forming the n-grams. Especially, Gulcehre et al. [13] provided two approaches:

Shallow Fusion and Deep Fusion, which have been widely used and are the state-140

of-the-art RNNLMs in machine translation and speech recognition tasks. How-

ever, these RNNLMs are integrated into the sequence-to-sequence recognizer in

a serial way. Both the sequence-to-sequence recognizer and the language models

are trained separately and combined together in the final step. In that sense,

the two different modules cannot properly benefit one from another and lever-145

age the mutual information that both the optical recognizer and the language

models could provide one to another. Our proposed candidate fusion language

modelling is based on the idea that the optical part and the statistical character

modelling shall communicate between each other, being able to jointly decode

the most likely and most visually suitable character sequence.150

3. Getting Enough Training Data

The first extension that we propose over our previous sequence-to-sequence

architecture [11] is related to the training data pre-processing steps, namely the

data augmentation step and the use of synthetic fonts.

A system able to effectively recognize handwritten words should be able to155

deal with the inherent deformations of handwriting text. These deformations

not only come from the different writing styles across different individuals, but

also in words written by the same person at different times. Figure 2 presents

several real word images coming from different datasets and authors showing

the huge variability in styles. Traditionally, to allow handwritten word recogni-160

tion systems to generalize and prevent over-fitting, without having to manually

annotate millions of word samples, data augmentation has been proposed in

the literature. However, this technique is not able to increase the number of

handwriting styles in the dataset. To solve this lack of diversity of handwriting

styles, pre-training the recognition models with synthetic data is proposed. In-165

tuitively, feeding more data that looks “realistic” as a pre-training provides a

7



Figure 2: Real word samples in IAM, GW and Rimes datasets, from top to bottom, re-

spectively. Each example has different characteristics such as shear, stroke width, language,

etc.

pre-condition to our system, making it able to extract the general features re-

quired for handwriting recognition. Afterwards, a fine tuning with real data will

adapt it to the desired use case. In this Section, both techniques are presented

and adapted to handwritten words.170

3.1. Data Augmentation

Having enough training data is crucial for the performance of deep learning

frameworks. To tackle this problem, some data augmentation techniques have

been proposed in the literature. Usually, random image transformations are

applied to the training data in order to increase the diversity. In our sequence-to-175

sequence setting, these transformations are constrained to obtain a realistically

looking image where the text is readable. In this work, we specially designed

a pipeline able to capture the variability of real data in the document domain.

These set of operations with random parameters are applied among all epochs

and consist of a blurring / sharpening step, elastic transformations by using180

a mesh grid [33], shear, rotation, translation and scaling transforms, gamma

correction and blending with synthetically generated background textures. The

differences among the state-of-the-art data augmentation methods are shown in

Table 1.

Figure 3 shows some examples that are used in training after the data aug-185

mentation module. Notice that the proposed operations introduce variations

of word samples during training. This diversity helps to some extent to pre-

vent over-fitting and leads to models that are able to generalize better than
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Table 1: Comparison of the data augmentation techniques among state-of-the-arts.

Methods Dutta et al. [34] Yousef et al. [35] Proposed

Blurring/sharpening − − X

Elastic transformation X X X

Shear X X X

Rotation X − X

Translation and scaling X X X

Gamma correction − − X

Blending with background − − X

Sign flipping − X −

training just with the original set of images. However, the generated words are

restricted to a fixed lexicon and the writing styles provided by the training set.190

Hence, the system is not able to extend the vocabulary which is a key feature

in handwritten word recognition systems.

3.2. Pre-training with Synthetic Data

Recently, it has become a common trend the use of synthetically generated

images to magnify the training data volume [36]. Instead of generating realistic195

images, the idea is to encode the necessary information required for a desired

task. Available public datasets, such as the IIIT-HWS dataset [37], have already

tackled the generation of synthetically generated handwriting word collections

by the use of truetype electronic fonts. Such approach has the advantage that

one can virtually generate an infinity of annotated training samples for free.200

However, the available datasets do not consider special characters (e.g. accents,

umlauts, punctuation symbols, etc.) that may be required. Hence, we defined

our own data generator able to be used to train several languages taking into

account its own peculiarities.

As a text corpus, several books written in English and French have been205

used. These books are freely available on the Internet and will model the lan-

guage character distribution. From these books, over 250.000 unique words were

collected. Afterwards, we randomly render those words with 387 freely available
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Figure 3: Examples of data augmentation on real handwritten words. The first row shows real

word samples, then followed by 10 variations of such word after random data augmentation.

electronic fonts that imitate cursive handwriting. However, for a given font, all

of the instances of a character will always look the same. In order to overcome210

such limitation, the same data augmentation pipeline previously presented has

been applied. This augmentation step is applied online within the data loader,

so that each batch is randomly augmented. Some samples of synthetic words

are shown in Figure 4.

Adversarial after included Nester embrouiller tonnerre

Figure 4: Examples of synthetic data generation. The first row is the given word from a

public dictionary, then followed by 10 rendered image samples with different electronic fonts

and random augmentation.
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Figure 5: Architecture of the proposed sequence-to-sequence based recognizer.

4. Sequence-to-Sequence Word Recognizer215

Our baseline handwritten word recognizer, previously introduced in [11] fol-

lows an encoder-decoder architecture. An attention mechanism is used to help

the system focus at some spatial locations of the image when decoding character

by character.

Figure 5 introduces the whole pipeline of the proposed sequence-to-sequence220

architecture. The proposed model has three components: encoder, attention

and decoder. Each part will be detailed in the following sections.

4.1. Encoder

The first component of our architecture is an encoder, shown in the blue box

in Figure 5, whose objective is to extract high-level features from handwriting225

word images, that hopefully will discriminate between different glyphs. These

features should be able to codify the contents of the image as well as the order.

In this work, we tested two different approaches for the encoding part. On the

one hand a Convolutional Neural Network with positional encoding [38], and,

on the other hand a CNN followed by a Recurrent Neural Network architecture,230

specifically, a Bidirectional Gated Recurrent Unit (BGRU).
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Both the positional encoding and the recurrent network modules play the

role to provide positional information. The idea is to help the decoder to follow

the proper order during the decoding process. Different CNN architectures will

be further discussed in Section 6.3. We denote hi ∈ H, i ∈ {1, 2, . . . , N} as the235

output sequence of the encoder, where H is the final feature representation of

the whole word and N is the length of H. Note that different word lengths will

yield different feature sizes N . Figure 5 presents the encoder with a RNN.

4.2. Attention Mechanism

The basic idea of attention mechanisms is to focus the decoder part of the240

network to specific regions containing relevant information at each time step.

In our particular scenario, what we expect is that the attention mask focuses at

each different character at each decoding step following the reading order. By

using attention mechanisms, the decoder task becomes much more simple since

it should only focus on individual character recognition rather than obtaining245

also the proper order and feature alignment.

In our work we compare and discuss two popular attention mechanisms

applied to the specific task of recognizing handwritten words. A detailed per-

formance evaluation is provided in Section 6.3.

4.2.1. Content-based Attention250

Attention mechanisms were first proposed in the machine translation field to

help the decoder in deciding which words from the source sentence the network

shall focus on to predict the proper output word in the target language. In this

setting Bahdanau et al. [20] proposed an attention model which deals with the

content of the input features. In this case, the order is not taken into account255

in this model and should be processed in the encoder step either by using posi-

tional encoding or a recurrent architecture. This occurs because the proposed

mechanism deals with the feature contents rather than using a combination with

the previous attention mask.
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In this setting, we define αt as the mask vector of the attention at time step260

t and st as the hidden state of the decoder at current time step t ∈ {1, 2, . . . , T},

where T is the maximum length of the transcription. The mask vector of the

attention αt is calculated by:

αt = Softmax(et) (1)

where et,i = f(hi, st−1) is a learnable function. In this model f(hi, st−1) =

wT tanh(Whi + V st−1 + b) where w, W , V and b are trainable parameters.265

We denote as context vector the features that will be fed to the decoder at

each time step. These features are generated from the attention mask αt and

the encoder feature representation H. Thus, the context vector at the current

time step is obtained by,

ct = g(αt, H) =

N-1∑
i=0

αtihi (2)

4.2.2. Location-based Attention

Despite the use of positional encoding or recurrent networks, it is still a

challenging task to track the attention steps across the word image. In this

sense, Chorowski et al. [21] introduced a new attention method that makes use

of the previous attention mask. In practice, this is done by adding an extra270

location term lt, which is calculated by:

lt = F ∗ αt−1 (3)

where F ∈ Rk×r is a trainable parameter, ∗ is a convolutional operation. Thus,

the location-based attention can be written as:

et,i = f ′(hi, st−1, lt) = wT tanh(Whi + V st−1 + Ult,i + b) (4)

where w, W , V , U and b are trainable parameters. In this way, we have explicitly

included the location information into the attention mechanism.
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(a) (b)

Figure 6: Architecture of the conventional decoder and our simplified decoder are shown in

(a) and (b), respectively.

4.3. Decoder

Given the corresponding context vector and a 〈go〉 symbol, the decoder275

should be able to start the decoding process of the image text. The decoder is

implemented as a unidirectional multi-layered GRU, which has enough capacity

to predict a character at each time step. This character is then fed to the next

iteration until an 〈end〉 symbol appears.

The decoder’s output are the different predicted characters y = {y1, y2, . . . , yT }280

at each time step, where T is the maximum length of the final transcription.

Our proposed decoder unit is different from the conventional decoder unit that

has been utilized in other sequence-to-sequence approaches as shown in the red

box in Figure 5. Since the decoder unit itself has enough ability to produce a

proper character output, we can reduce the extra injection of context vector ct.285

Thus, We simplify the procedure between the decoder hidden state st and the

output logit yt at current time step t as shown in Figure 6. The experimental

comparison between both two architectures will be detailed in Section 6.3.
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The predicted character at the current time step t is calculated by:

yt = arg max(ω(st)) (5)

where ω(·) is a linear operation to match the size of logit output to the size of

possible characters. And then, to keep it simple and efficient, we just pick up

the character with the highest probability and transfer it to a corresponding

embedding vector ỹt by a embedding layer:

ỹt = Embedding(yt) (6)

The input of each decoder unit consists of the previous prediction ỹt−1 and

the context vector ct, so each hidden state of the decoder st is calculated by:

st = Decoder([ct, ỹt−1], st−1) (7)

where [·, ·] is the concatenation of two vectors.

At the beginning of the decoding process, we always feed into the start signal290

〈go〉 as the first input character, while the prediction process ends when the end

signal 〈end〉 occurs or until the maximum time step T is reached.

5. Candidate Fusion Language Model

In this section, we propose a novel way to integrate language models into

sequence-to-sequence models for handwritten word recognition tasks, that we295

coined as candidate fusion. The main idea is that the we first train a very

simple language model with just text corpora (no images) with a recurrent

neural network that given a sequence of characters is able to predict which is

the most likely character to come next. This would be a similar idea of the well

known word2vec models (e.g. skipgram) that are able to deduce most likely300

words within context, but for characters. Once this language model is pre-

trained, now we can combine it with the optical decoder, so that the input to

the decoder are not only the attended visual features at each particular time

step, but also which is the most likely characters to be decoded given the ones

that have been decoded so far.305
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Unlike the popular Shallow Fusion and Deep Fusion language models [13],

shown in Figure 7(a) and (b) respectively, the final prediction is not decided

by merging the outputs of the recognizer and the language model. The role of

our language model is to provide other probabilities among all the characters,

as indicated by ylmt , where t is the current time step during the decoding stage.

This language model information will be injected into the decoder as one of the

inputs. So the new hidden state of the decoder ŝt is calculated by:

ŝt = Decoder([ct, ỹt−1, p
lm
t−1], ŝt−1) (8)

where plmt−1 is the output of the language model from slmt−1 at the previous time

step t−1. The effect of the linguistic knowledge will be extensively analyzed

in Section 6.3.

The difference between Equations 7 and 8 is that we add now a second

“adviser” plmt−1 into our decoder. Thus, the decoder can learn a trade-off between310

its output ỹt−1 and that of an additional language model. We call it “adviser”

because the decoder unit could choose to take into account the information from

the “adviser” or totally ignore it. In this way, the explicit language model will

never make the recognition performance worse than the baseline that is trained

without language model at all. The reason is that, in an extreme case, if the bias315

of the language knowledge between the training data and the outside corpus is

too high, the decoder can be adapted to predict transcriptions by ignoring the

language model and just relying on the optical part.

Shallow Fusion directly applies a language model to the final prediction of

the decoder by simply summing up both the probabilities of the recognizer320

yt and the language model ylmt , as shown in Figure 7 (a). Because of the

bias of the language knowledge between the training corpus and the outside

corpus, summing up the probabilities of both the recognizer and language model

modules may produce incorrect final transcriptions. Therefore, to make full use

of Shallow Fusion, one must carefully select a corpus that shares most of the325

words within the target dataset and tune the weight hyper-parameter that is in

charge of the trade-off between both the probabilities of the recognizer and the

16
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Figure 7: Architecture of the language models: (a) Shallow Fusion, (b) Deep Fusion, and (c)

our proposed Candidate Fusion. The blue circles represent the hidden states of the decoder,

the red circles represent the hidden states of the language model, and the green boxes are the

final predictions at each time step. Especially in (a), the rectangle represents the summation

between the predictions of the language model and the decoder; in (b), the crossed rectangle

represents the concatenation process among the hidden state of the language model and that

of the decoder and context vector; in (c), J is the injection function, which could be a softmax

activation, sigmoid activation, embedding or direct connection without activation.

language model.

Deep Fusion shares the same language model as Shallow Fusion, but it goes

one step further to merge both information from the recognizer and the language330

model in the feature level as shown in Figure 7 (b). The decoder of the recognizer

and the language model are two independent pipelines, while the hidden state

of the recognizer st, the hidden state of the language model slmt and the context

vector ct at time step t merge together by concatenating them. Afterwards,

the merged feature goes through a fully connected layer and an activation layer335

to generate final prediction yot . Both the recognizer and the language model

contribute to the final prediction, but they are still independent from each

other. Thus, this method still can not handle the bias of the language knowledge

between both the training corpus and the outside corpus. In any case, as it can

be jointly fine-tuned, the performance could be better than the Shallow Fusion340

case.

Our Candidate Fusion language model, shown in Figure 7 (c), is designed to
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further boost the performance. During training, it treats each independent word

as a sequence of characters for input and tries to generate a shifted prediction,

which has no 〈go〉 symbol at the beginning but with extra 〈end〉 symbol to345

the end. The language model is first pre-trained on an external text corpus,

and then plugged in the recognizer for a joint fine-tuning on the handwritten

dataset. In the fine-tuning process, the input of the language model is the

prediction of the recognizer at the previous time step, which takes into account

both information of the recognizer and the language model. Note that the350

language model is also fine-tuned on the text of training dataset, which could

further reduce the gap between the external text corpus and the text of target

dataset. The intuition behind is to take advantage of the mutual information

from both the optical recognizer and the morphology of the tackled language.

This means that the decoder incorporates information both from the attended355

visual features and the language knowledge at each time step, and, at the same

time, the language model itself can also adapt to the most common mistakes

made by the recognizer. To do this, at each time step t−1, the language model

takes the final prediction yt−1 as input and outputs a corrected version ylmt−1

utilizing the learnt knowledge from the outside corpus. Then, at the next time360

step t, the recognizer takes the previous prediction of the recognizer yt−1, the

corrected version of the language model ylt−1m and the current context vector ct

as inputs to generate the final prediction yt. At Figure 7 we can see our difference

that the final prediction is taken from the recognizer and the language model is

highly integrated into the recognizer system as a candidate prediction, that is365

why we denote this method Candidate Fusion. We believe that it is a natural

way to integrate a language model. In Section 6 we will show the performance

improvement on popular datasets.

6. Experiments

In this section we present the extensive evaluation of our proposed approach.370

First, we perform several ablation studies on the key components to analyze the
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most suitable architecture. Second, we compare our recognizer with the state-

of-the-art models on handwritten word recognition. Next, we analyze the per-

formance of the most popular language models and compare with the proposed

candidate fusion approach. Further, we apply a simple edit-distance-based lex-375

icon to evaluate how the use of a closed lexicon can boost the performance.

Finally, we provide an experiment on an industrial use case.

6.1. Datasets and Metrics

We will use several datasets for the experimental evaluation. They have been

selected because of their different particularities: single or multiple writers,380

modern or historical documents or written in different languages. The IAM,

George Washington (GW) and Rimes datasets are publicly available, whereas

CarCrash is a private dataset. The details of these datasets are shown in Table 2.

The standard Character Error Rate (CER) and Word Error Rate (WER)

metrics are utilized to evaluate the system’s performance. Formally,385

CER =
S + I +D

N
(9)

where S, I, D are the number of character substitutions, insertions and dele-

tions, respectively. N is the total number of characters in the groundtruth

transcription.

WER =
Sw + Iw +Dw

Nw
(10)

The WER metric is computed similar to CER. In this case, Sw, Iw, Dw and

Nw refer to words instead of characters. Thus, a lower value indicates a better390

performance.

6.2. Implementation Details

All these experiments were run using PyTorch [41] on a cluster of NVIDIA

GPUs. The training was done using the Adam optimizer with an initial learning

rate of 2 · 10−4 and a batch size of 32. We have set the dropout probability to395
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Table 2: Overview of the different datasets used in this work depicting its characteristics.

Dataset Words Writers Period Language

IAM [39] 115,320 657 Modern English

GW [40] 4,860 1 Historical English

Rimes [24] 66,978 1,300 Modern French

CarCrash 24,492 640 Modern German

be 50% for all the GRU layers except the last layer of both the encoder and

the decoder. There is a probability of 50% to apply data augmentation on the

training set, and we use label smoothing [42] as a regularization mechanism.

6.3. Ablation Study

The first experiment corresponds to an ablation study, which has been per-400

formed using the IAM dataset. The CER (%) and WER (%) shown correspond

to the validation set of the IAM. The only one exception is Table 9, which is

applied on the GW dataset.

Firstly, different popular CNN models have been evaluated in Table 3. Given

that the VGG19-BN model obtains the best results, we have chosen it as the fea-405

ture extractor in our architecture. The experiments are performed by choosing

the CNN+BGRU architecture in the encoder part and location-based attention

with label smoothing in the decoder part.

Secondly, we compare two different architectures of the encoder, as explained

in Section 4.1. The CNN+BGRU architecture obtains better results than when410

using a CNN with positional encoding, as shown in the Table 4, because a

trainable BGRU can provide not only the positional information, but also better

mutual information among all the feature vector H.

Thirdly, we compare our proposed decoder unit with the conventional de-

coder unit explained in Section 4.3. From Table 5 we notice that the proposed415

decoder unit has a similar and even slightly better performance even without

the post feeding of the context vector. Thus, we opt to keep the simpler version

of the decoder architecture.
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Table 3: Comparison among the popular CNN models on IAM validation set.

Model CER WER Model CER WER

VGG11-BN 7.35 20.91 ResNet101 5.38 14.34

VGG13-BN 6.85 19.76 ResNet152 5.13 13.89

VGG16-BN 6.57 17.04 SqueezeNet 1.0 6.82 17.35

VGG19-BN 5.01 13.61 SqueezeNet 1.1 8.25 20.56

ResNet18 6.72 16.13 Densenet121 5.29 13.79

ResNet34 5.51 14.25 Densenet169 5.30 14.23

ResNet50 5.27 13.95 Densenet201 5.37 13.79

Table 4: Comparison between positional encoding [38] and BGRU on IAM validation set.

Encoder CER WER

Pos. enc. 5.67 14.79

CNN+BGRU 5.01 13.61

Table 5: Comparison between the conventional decoder unit and the proposed simplified

decoder unit on IAM validation set.

Decoder Unit CER WER Time/Batch (s)

Conventional 5.06 13.91 0.236

Proposed 5.01 13.61 0.229

Table 6 shows the comparison between the two attention methods, as de-

tailed in Section 4.2. We can observe that location-based attention with label420

smoothing obtains the best performance.

Finally, to make the best of a language model, we have investigated which

is the best way to inject the linguistic knowledge. In Table 7, we have applied

different injection functions on the output of the language model using the GW

dataset. The best performance has been achieved without the usage of acti-425
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Table 6: Comparison between content and location-based attentions on IAM validation set.

Attention LabelSmooth CER WER

Content
− 5.79 15.91

X 5.08 13.88

Location
− 5.49 14.74

X 5.01 13.61

vation function while doing batch normalization on the concatenation of the

three components: the prediction of external language model, the embedding

of the character that is predicted by the decoder at previous time step, and the

current context vector. Different activations have been visualized in Figure 8.

The softmax approach, as shown in Figure 8(a), is not working well because it430

gives too strong hypothesis to only one specific character in the available list.

On the contrary, the sigmoid approach, as shown in Figure 8(b), gives inde-

pendent probabilities across the available character list, but it also highlights

the unrelated characters. The embedding approach selects the best hypothesis

from the language model and feeds its embedded format into the decoder. This435

can help because the embedding process has projected the relevant linguistic

characters into a common latent space, which gives the decoder an opportunity

to select a possible character in a closed range in that space, but the embedding

process loses some useful information. Thus, the best way is to use what it is

provided from the language model without any activation function as shown in440

Figure 8(c), while batch normalizing the three inputs of the decoder can fur-

ther improve the performance because of the similar value range for the three

different vectors.

6.4. Main Results

In this section, firstly, we describe the comprehensive experiments that have445

been conducted to explore the best sequence-to-sequence architecture for hand-

written word recognition tasks. Secondly, based on the baseline model that has
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(a) (b) (c)

Figure 8: Visualization of the probability distributions among characters when using different

injection functions for the output of language model. The groundtruth is “the”, where pre-

dicted probability distributions are shown from top to bottom corresponding to “t”, “h” and

“e”, respectively. (a) is of softmax, (b) is of sigmoid, and (c) is without activation.

Table 7: Comparison of the injection functions to inject the external language model on GW

validation set.

Injection function CER WER

Baseline 2.82 7.13

Softmax 2.78 7.13

Sigmoid 2.81 7.04

Embedding 2.78 7.13

No activation 2.58 6.78

No activation + batch norm. 2.52 6.61

been selected, we carry on further experiments with the sequence-to-sequence

model equipped with the different language models to prove their different effec-

tiveness and robustness. Finally, a real industrial use case is shown to demon-450

strate its applicability to industry.

6.4.1. Baseline Model

We would like to analyze the performance of our sequence-to-sequence rec-

ognizer without any assistance from external language model nor a lexicon. So,

in Table 8, we have listed all the comparable results achieved by the state-of-455

the-art handwriting recognizers. From the table, we observe that our recognizer
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achieves good performance on the IAM, GW and Rimes datasets. We show

some examples of the visualized attention maps on the IAM, GW and Rimes

(Figure 9). From those examples, we observe that the attention is able to attend

each character at its corresponding time step. In addition, it can adapt itself to460

change its focus depending on the varied width of each character.

Table 8: Comparison with the state-of-the-art handwritten word recognition works, without

language model nor lexicon. Results are evaluated on test sets of IAM, GW and Rimes

datasets.

IAM GW Rimes

Method CER WER CER WER CER WER

Mor et al. [4] − 20.49 − − − 11.95

Pham et al. [43] 13.92 31.48 − − 8.62 27.01

Bluche et al. [5] 12.60 − − − − −

Wiginton et al. [44] 6.07 19.07 − − 3.09 11.29

Sueiras et al. [10] 8.80 23.80 − − 4.80 15.90

Kang et al. [11] 6.88 17.45 − − − −

Krishnan et al. [45] 6.34 16.19 − − − −

Toledo et al. [18] − − 7.32 − − −

Dutta et al. [34]a 4.88 12.61 4.29 12.98 2.32 7.04

Proposed 5.79 15.15 2.82 7.13 2.59 8.71

aThis work provides the results using Test-time Augmentation, which are not directly

comparable with other results.

6.4.2. Integration of the Language Model

In this subsection we evaluate the performance of our language model by

expanding the baseline model shown in Table 8. The results are shown in

Table 9. Our language model is pre-trained with a large corpus, detailed in465

Section 3.2, and fine-tuned with the training data within the whole sequence-

to-sequence system during end-to-end training process. Thus, the language
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Figure 9: Visualization samples of attention on IAM dataset (top), GW dataset (middle) and

Rimes dataset (bottom).
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model can adapt itself to a specific dataset corpus while keeping the capacity of

generalization. To make a fair comparison, we have tuned the trade-off weight

between language model and recognizer to achieve the best performance in the470

case of shallow fusion. While in the case of deep fusion, the results are obtained

with early stopping on validation set.

As we can see in this table, our language model can boost the performance on

all the three datasets, achieving better results than the Shallow Fusion and Deep

Fusion language models. In fact, the Shallow Fusion makes the performance to475

decrease on all the three datasets, because it is too sensitive that any peaky

probability distribution from both the outputs of the decoder and the external

language model can ruin the final result. The Deep Fusion model behaves

quite well on the GW and Rimes datasets, being able to improve the results

a little bit compared to the baseline. In conclusion, our proposed Candidate480

Fusion is better than the Shallow and Deep Fusion approaches, because it is

trainable and flexible to assist the recognizer during decoding. In addition, it

does not need to manually tune the trade-off between the outputs of decoder

and language model. In fact, in our Candidate Fusion architecture, the role of

an external language model is to provide an extra predicted transcription based485

on the recognizer’s prediction and its own language knowledge, while at the

same time, the external language model can be adapted to the most common

errors made by the sequence-to-sequence optical recognizer.

6.4.3. Restriction with a Close Dictionary

In all the experiments shown above, we never restrict the recognizer to a spe-490

cific lexicon, which means the recognizer can predict out-of-vocabulary (OOV)

words. Indeed, a generic handwritten word recognizer should not be restricted

to closed lexicon in industrial use cases. However, since the use of closed lexicons

is also a common practice, we have also tested how it can improve the overall

performance. Thus, in Table 10, we have applied a simple edit-distance method495

to find the closest word in three lexicons: the brown lexicon with the lexicon of

the test set (te+brown), the lexicon from the target dataset (tr+va+te), and
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Table 9: Comparison with the state-of-the-art handwritten word recognition with language

model, but not constrained by a lexicon. Results are evaluated on test sets of IAM, GW and

Rimes datasets.

IAM GW Rimes

Method CER WER CER WER CER WER

Baseline no LM 5.79 15.15 2.82 7.13 2.65 8.71

Shallow Fusion LM 6.14 16.12 2.95 7.73 3.63 12.29

Deep Fusion LM 5.91 15.45 2.72 6.79 2.54 8.20

Candidate Fusion LM 5.47a 14.51a 2.51 6.62 2.26a 7.47a

aStatistically significant with threshold P-value 0.05.

only the lexicon of the test set (te). As expected, a lexicon can always improve

the performance.

6.4.4. Application to Text-line Level500

Our proposed method is not restricted to word level data. Thus, we propose

an experiment to apply the Candidate Fusion LM based recognizer to text-

line level Rimes dataset as shown in Table 11. The performance of joining

the candidate fusion LM is proved to be statistically significant with threshold

P-value 0.05.505

6.4.5. Application to a Real Industrial Use Case

Finally, we evaluate our recognizer in a real world scenario for recognizing

handwritten fields in car crash statement forms, which is an in-house private

dataset. Due to the privacy protection, we could only show a cropped image

of the real dataset in Figure 10. In this industrial dataset, the texts to be510

recognized are names, telephone numbers, emails, addresses and even check-

boxes, which are way more challenging than the popular scientific datasets and

would be unfeasible to be included in a vocabulary. Thus, we do not use explicit

language model for both seq2seq- and CTC- based methods. Compared with
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Table 10: Applying a simple edit-distance based lexicon constraint, the results are evaluated

on test sets of IAM, GW and Rimes datasets.

IAM GW Rimes

Lexicon CER WER CER WER CER WER

Baseline 5.47 14.51 2.51 6.62 2.26 7.47

te+brown 4.97 10.30 2.29 4.90 1.82 4.59

tr+va+te 4.47 8.83 1.79 3.95 1.67 4.44

te 4.15 8.11 1.63 3.44 1.47 3.81

Table 11: Results at text-line level on the Rimes dataset.

Method CER WER

Baseline (w/o LM) 8.33 25.31

+ Candidate fusion LM 6.87 21.14

a well-known CTC-based approach [6], our proposed approach achieves better515

performance, as shown in Table 12. This results suggests that our model has a

good generalization ability.

Figure 10: A cropped area of the real industrial use case dataset.
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Table 12: Results of a real use case.

Method CER WER

CTC-based [6] 5.6 7.4

Proposed 3.7 4.5

7. Conclusion

In this paper we have presented a novel integration of an external language

model into a sequence-to-sequence model for handwritten word recognition. Our520

proposed Candidate Fusion language model is trained and optimized together

with the optical recognizer, avoiding biases between different training corpora.

In addition, it has the advantage that the language model guides the decod-

ing according to the most likely character sequence. The extensive evaluation,

including an ablation study as well as comparisons with state-of-the-art ap-525

proaches, demonstrates the effectiveness of our approach. Indeed our approach

not only outperforms the existing approaches on public scientific datasets, but

it also demonstrates its robustness on a real industrial use case.
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