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Oriol Ramos Terradesc

aL3i, La Rochelle University, La Rochelle, France
bAllRead MLT, Barcelona, Spain

cCVC, Universitat Autonoma de Barcelona, Barcelona, Spain

Abstract

Multimodal learning from document data has achieved great success lately

as it allows to pre-train semantically meaningful features as a prior into

a learnable downstream task. In this paper, we approach the document

classification problem by learning cross-modal representations through lan-

guage and vision cues, considering intra- and inter-modality relationships.

Instead of merging features from different modalities into a joint representa-

tion space, the proposed method exploits high-level interactions and learns

relevant semantic information from effective attention flows within and across

modalities. The proposed learning objective is devised between intra- and

inter-modality alignment tasks, where the similarity distribution per task is

computed by contracting positive sample pairs while simultaneously contrast-
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ing negative ones in the joint representation space. Extensive experiments

on public document classification datasets demonstrate the effectiveness and

the generality of our model on low-scale and large-scale datasets.

Keywords:

Multimodal Document Representation Learning, Document Classification,

Contrastive Learning, Self-Attention, Transformers

1. Introduction

The research field of document image classification brings various chal-

lenges for multimodal researchers given the heterogeneity of document data

and the contingency often found between its different modalities. Intuitively,

documents are natively multimodal. They require multimodal reasoning over

multimodal inputs (e.g. visual, textual, and layout) which are approximated

by combining visual-textual information as two coherent and complementary

signals that can be further enhanced with layout information. These docu-

ments may be presented in a diverse set of sources such as handwritten text,

tables, forms, figures, multi-column layouts, plain text, curved text, and ex-

otic fonts as displayed in the Figure 1. Due to the different visual styles,

understanding documents visually encounters the problem of low inter-class

discrimination, and high intra-class structural variations between the dif-

ferent categories of document data. In general, some documents contain

abundant visual information such as reports, and scholarly articles, in which

case a stronger emphasis on the semantic meaning of language is more help-
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ful. For instance, some types of documents such as handwriting are mainly

not recognizable by OCR algorithms, which lead to losing textual informa-

tion, and thus, semantic meaning. Then, the visual information within the

image regions of the document should be strongly emphasized. Therefore,

handling the semantic and stylistic variability in documents is challenging to

computational models that are trained mostly on natural images. Further-

more, multimodal reasoning allows to integrate information from language

and vision modalities, to reason about the structure of the documents (e.g.

how the accompanying figures support the text), and to gather the relevant

semantic information from the text corpus (e.g. how to distinguish between a

letter and an email), to finally gather the most important information within

the common representation space for decision-making.

Most pre-training models rely on training huge datasets to learn a good

representation for downstream document applications. However, the short-

comings of the preceding pre-training approaches are three-fold. First, the

semantic structure of the document is not only determined by the text within

it but also by the visual features (i.e. tables, font size and style, figures,

etc). For semi-structured documents such as forms and receipts, semantic

regions rely more heavily on their surrounding contexts. Given this assump-

tion, page-level pre-training is more preferred than word-level pre-training

which allows us to better capture the global information between different

modalities guided by the model itself, instead of limiting the model to learn

the word-level local features with the given relative position encoding of the
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Figure 1: Document samples from the categories of the RVL-CDIP dataset which show
the high intra-class structural variability and low inter-class discrimination between the
different categories of document data. Samples from different classes are shown with a red
border, while samples from the same class are shown with green border.

words, as well as to learn the multimodal interactions in a more informa-

tive and complete way with less possible errors, which occur while using the

relative position encoding as visual features (e.g. the irregular artistic text

in advertisement documents). Third, during inference, the vision-language

sample pairs need to be fed to the fusion modules to calculate the prediction

scores in order to perform the document classification task, which remains

computationally expensive. Therefore, the main challenge remains in align-

ing different modalities without using millions of document samples (320k

instead of 11M) as most of pre-trained models. Hence, accessing labels in

the pre-training stage makes it possible to have a more adapted and lighter

pre-training, which lead to fewer computing resources.
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To address the semantic gap and the lack of closer interactions between

image regions and text sequences within and across vision-language modali-

ties, we propose a cross-modal contrastive vision-language pre-training model

by learning cross-modal representations as a prior in a unified pre-training

network. To encourage cross-modal learning, we model intra- and inter-

modality representations between the cues of the vision-language modalities

in the pre-training stage. We design an inter-modality cross-attention mod-

ule denoted as (InterMCA) to capture relevant features from image regions

and semantic meaning from text sequences. We aim to ensure that fea-

tures from vision and language modalities map to closer points in the joint

embedding space. Nevertheless, existing cross-modal document understand-

ing approaches lack an explicit measure which ensures that similar features

from the same modality stay close in the joint embedding space. We assume

that if similar features from the same category of each modality map to dis-

tant points in the joint embedding space, then the embeddings generated

within vision and language modalities will lack semantically enriched infor-

mation, and thus, will generalize badly for downstream tasks. As a remedy,

we introduce intra-modality representation which is carried within an intra-

modality self-attention module denoted as (IntraMSA), which is devoted to

constructing intra-modality relations within each modality according to the

self-attention weights of image regions and text sequences.

Moreover, leveraging cross-modal relations through InterMCA and In-

traMSA attention modules require a cross-modal learning objective. In the
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pre-training stage, we propose to pre-train the network with a combinatorial

cross-modal contrastive learning loss. It aims to simultaneously learn visual-

textual features that represent document data in a more efficient manner. For

the downstream application, we run uni-modal and multi-modal fine-tuning

on top of the pre-trained vision and language encoders to perform docu-

ment classification. The superior performance on three document datasets

demonstrates that the proposed cross-modal learning network, denoted as

VLCDoC, can lead to learn meaningful cross-modal representations. The

main contributions of this work are summarized as follows:

• We design a unified network for cross-modal representation learning.

Our network consists of leveraging two flexible extra levels of cross-

modal interactions through InterMCA and IntraMSA attention mod-

ules, to capture high-level interactions between visual-language cues in

document images. The proposed VLCDoC approach shows its superi-

ority over the uni-modal methods.

• We propose a cross-modal contrastive learning objective to further ex-

plore the relations between vision and language cues. The proposed

cross-modal contrastive loss allows to learn and align the feature rep-

resentations within and across vision-language modalities.

• Under a fair comparison setting, our VLCDoC demonstrates a good

generality among vision-language based approaches on the benchmark

document datasets, and enables to learn robust and domain-agnostic
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feature representations for document classification. We show that the

vision transformer-based architecture used as a backbone of the vision

modality in our VLCDoC network can achieve comparable performance

when pre-trained on fewer data.

2. Related Work

2.1. Multimodal Document Understanding

Text and Image modalities [T+I]: Zhang et al. [1] proposed a multi-

modal framework for simultaneous text reading and information extraction

for document understanding. Bakkali et al. [2, 3] proposed a cross-modal

deep network to classify documents in an early fusion manner. Dauphinee

et al. [4] constructed a model that uses both the visual information and

the textual content of a given document to make a decision in a late fusion

manner. Also, Bakkali et al. [5] proposed an ensemble self-attention-based

mutual learning network that jointly learns text-image features in an end-to-

end fashion to classify document images.

Text and Layout modalities [T+L]: LayoutLMv1 [6] jointly models in-

teractions between text and layout information across document images by

adding 2D word position in the language representation to better align the

layout information with the semantic representation. LILT [7] fine-tunes on

different languages used in pre-training with pre-trained textual models.

Text, Layout and Image modalities [T+L+I]: LayoutLMv2 [8] lever-

ages vision, language, and layout modalities in a cross-modal pre-training
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scheme for a better cross-modality interaction. In LayoutLMv3 [9], the

authors propose a joint multimodal approach to model the interaction be-

tween textual, visual, and layout information in a unified multimodal pre-

training network, with different pre-text tasks for a better generality to

image-centric and text-centric downstream document AI tasks. Besides, Self-

Doc [10] exploits cross-modal learning in the pre-training stage to perform a

task-agnostic framework to model information across textual, visual, and lay-

out information modalities without requiring document data annotation. In

DocFormer [11], the authors encourage multimodal interaction using a mul-

timodal transformer architecture to perform visual document understanding.

There is a noticeable difference between our proposed method, VLCDoC,

and other concurrent works in document image pre-training. The main dif-

ference is that our proposed method is page-level, instead of word-level pre-

training. Moreover, page-level pre-training allows us to better capture the

global information between the vision modality and the language modality by

using the entire document. However, the masking-based pre-training strate-

gies that have been widely used in most of the recent pre-training works rely

on the layout information of the extracted words along with their relative po-

sition encoding within the document image, which leads to learning only the

local word-level relationships between the vision modality and the language

modality. Nevertheless, in some specific cases of administrative document

data like advertisement documents, which are filled by the visual content in

most of the regions of the document, even if there are very few text words
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which can be masked, locating the masked text with artistic style to get an

accurate position encoding is also challenging. In this case, capturing the

relationships between the vision modality and the language modality by the

overall features presented in the whole document are more pertinent than the

local information. In this way, we let the model to automatically learn the

relationships between the visual features of any region and the correspond-

ing textual features presented in the document image rather than forcing the

model to learn and capture the relationships between the given text (masked

word) and the corresponding visual features (the location of the masked word

within the document image).

2.2. Vision-Language Alignment

Cross-modal alignment is a broad category of pre-training techniques

which aims at mapping text and images into a common space, where se-

mantic similarity across different modalities can be learned by contrastive

losses [12, 13, 14]. While dealing with vision-language sample pairs, though

individual samples may demonstrate inherent heterogeneity in their content,

they are usually coupled with each other based on some higher-level concepts

such as their categories. This shared information can be useful in measur-

ing semantics of samples across modalities in a relative manner. Verma et

al. [15] analyzed the degree of specificity in the semantic content of a sam-

ple in the vision modality with respect to semantically similar samples in

the language modality. Krishnan et al. [16] measured the similarity score
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between the words distributions across two document images, by detecting

patterns of text re-usages across documents written by different individuals

irrespective of the minor variations in word forms, word ordering, layout or

paraphrasing of the content. Different from the recent research, the mul-

timodal features are obtained by simply concatenating the text and layout

features as the multimodal features but ignore the real cross-modal inter-

actions. However, we propose intra-modality and inter-modality alignment

objectives to ensure that samples with semantically similar content stay close

in the common space, regardless of the modality. We aim to emphasize the

interaction and agreement between visual regions and the semantic mean-

ing of text sequences, as well as to intensify the inner-modality information,

by simultaneously preserving the original features and establishing inner-

interactions within each modality. Thus, page-level pre-training is necessary

to learn the multimodal relationships with the strengths of being able to

learn the global information and the overall relationships between the dif-

ferent modalities guided by the model itself, instead of limiting the model

to learn the word-level local features with the given relative position embed-

dings, and also of being able to learn the multimodal interactions in a more

informative and complete way with less possible errors which occur while us-

ing the coordinates of bounding boxes as visual features. Nevertheless, and

to the best of our knowledge, relying on label information of administrative

document data is necessary to link the different modalities (i.e. the image

and the text extracted from the document image) if we would like to conduct
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the page-level pre-training using the entire document.

2.3. Attention Mechanism

The attention mechanism was adopted to learn to attend to the most

relevant regions of the input space to assign different weights to different

regions, and to the most relevant words for the output which often occur at

similar positions in the input sequence as introduced by Bahdanau et al. [17].

Specifically, self-attention and co-attention learning have been widely applied

in multimodal vision-language learning tasks like document understanding,

and image captioning [10, 11, 18], aiming at learning the internal relations

in a text sentence or in an image. To model the internal relationships among

different modalities, we adopt the contextualized attention mechanism from

NLP [19] to improve the location accuracy of a document image region in

the vision modality for the desired text sequence in the language modality.

Our proposal highlights cross-modal co-attention (InterMCA), and internal

self-attention (IntraMSA) mechanisms which are integrated in VLCDoC.

3. Methodology

Figure 2 shows the overall architecture of the proposed cross-modal net-

work named VLCDoC. It is an encoder-only transformer-based architecture

trained in an end-to-end fashion. It has two main modalities to perform

visual-textual feature extraction. VLCDoC enforces deep multimodal in-

teraction in transformer layers using a cross-modal attention module. The
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Figure 2: Overview of the proposed cross-modal contrastive learning method. The network
is composed of InterMCA and IntraMSA modules with flexible attention mechanisms to
learn cross-modal representations in a cross-modal contrastive learning fashion.

VLCDoC architecture network consists of two main schemes: one contrastive

learning branch for cross-modal representation learning, and one cross-entropy

learning branch for classifier learning. This feature learning strategy aims to

learn a feature space which has the property of intra-class compactness and

inter-class separability, while the classifier learning branch is expected to

learn a domain-agnostic classifier with less bias based on the discriminative

features obtained from the encoder branch.

3.1. Model Architecture

3.1.1. Visual Features

To extract visual embeddings, we follow the original pre-trained vision

transformer architecture ViT-B/16 [20] as a backbone. Let 𝑣𝑣𝑖𝑠𝑛 ∈ R𝐻×𝑊×𝐶 be

the document image. We reshape it into a sequence of flattened 2𝐷 patches
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Figure 3: Illustration of the InterMCA and IntraMSA attention modules. The visual-
textual features are transformed into query, key, and value vectors. They are jointly
leveraged and are further fused to transfer attention flows between modalities to update
the original features.

𝑣𝑣𝑖𝑠𝑛𝑝 ∈ R𝑁×(𝑃2·𝐶), where (𝐻,𝑊) is the resolution of the document image,

𝐶 = 3 is the number of channels, (𝑃, 𝑃) is the resolution of each document

patch, and 𝑁 = 𝐻𝑊/𝑃2 is the resulting number of patches, which serve as the

input sequence length for the transformer encoder. The patches obtained are

then flattened and mapped to 𝑑 dimensions as the hidden embedding size.

The resulting visual embeddings are then represented as 𝑉 = 𝑣𝑖
𝑣𝑖𝑠𝑛

∈ R𝑑𝑣𝑖𝑠𝑛 ,

where 𝑑𝑣𝑖𝑠𝑛 is a 2𝐷 vector.

3.1.2. Textual Features

To extract textual embeddings, we first extract the text 𝑡𝑙𝑎𝑛𝑔 within docu-

ment images via an off-the shelf optical character recognition (OCR) system,
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e.g. Tesseract OCR1. The input sequences extracted with the OCR are fur-

ther fed into the pre-trained BERT𝐵𝑎𝑠𝑒 uncased encoder [21]. The resulting

textual embeddings are then represented as 𝑇 = 𝑡𝑖
𝑙𝑎𝑛𝑔

∈ R𝑑𝑙𝑎𝑛𝑔 , where 𝑑𝑙𝑎𝑛𝑔 is

a 2𝐷 vector of the same size as 𝑑𝑣𝑖𝑠𝑛. This way, we ensure that the visual

and the textual embeddings are of the same shape.

3.2. Cross-Modal Alignment

In this subsection, we introduce the InterMCA and IntraMSA attention

modules that capture intrinsic patterns by modeling the inter-modality and

intra-modality relationships for image regions and texts. Specifically, our

proposed attention modules are transformer-based architectures as in [19].

It consists of a multi-head self-attention sub-layer, and a position-wise feed-

forward sub-layer 𝑓𝐹𝐹 . Meanwhile, residual connections followed by the layer

normalization 𝑓𝐿𝑁 are also applied around each of the two sub-layers. In

the multi-head self-attention sub-layer, the attention is calculated ℎ times,

making it to be multi-headed. This is achieved by projecting the queries Q,

keys K, and values V ℎ times by using different learnable linear projections.

3.2.1. Inter-Modality Alignment

The inter-modality cross-attention module InterMCA aims to enhance

the cross-modal features by embracing cross-modal interactions across im-

age regions and texts. This module aims to transfer the salient informa-

tion from one modality to another as illustrated in the Figure 3. Let V𝑙 =

1https://github.com/tesseract-ocr/tesseract
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{𝑣1, 𝑣2, ..., 𝑣𝑚}, L𝑙 = {𝑙1, 𝑙2, ..., 𝑙𝑚} be the sets of intermediate visual and tex-

tual features at the 𝑙-th layer of the vision and language modalities respec-

tively, where 𝑣𝑖 ∈ R1×𝑑 𝑓 , 𝑙𝑖 ∈ R1×𝑑 𝑓 , and V ∈ R𝑚×𝑑 𝑓 , L ∈ R𝑚×𝑑 𝑓 . Note that

the visual-textual features have the same dimensional feature vector 𝑑 𝑓 . To

accomplish cross-modal interaction, we apply at first dot-product attention

to combine the queries of each modality with the keys of the other. The

weighted sum of the value of each modality is computed as:

InterMCAL→V(V𝑙) = softmax

(
QV𝑙K>

L𝑙

√
𝑑𝑘

)
VL𝑙 (1)

InterMCAV→L(L𝑙) = softmax

(
QL𝑙K>

V𝑙

√
𝑑𝑘

)
VV𝑙 (2)

In this way, we emphasize the agreement between the visual regions and the

semantic meaning of texts. The attention weights are then sent into the

feed-forward sub-layer. Finally, we get the output features of the next layer

of the vision modality V𝑙+1 computed as:

V𝑙
𝐴𝑡𝑡 = 𝑓𝐿𝑁V (InterMCAL→V(V𝑙) +V𝑙) (3)

V𝑙+1 = 𝑓𝐿𝑁V ( 𝑓𝐹𝐹 (V𝑙
𝐴𝑡𝑡 ) +V𝑙

𝐴𝑡𝑡 ) (4)

Similarly, the output features L𝑙+1 of the language modality are computed:

L𝑙
𝐴𝑡𝑡 = 𝑓𝐿𝑁L (InterMCAV→L(L𝑙) + L𝑙) (5)

L𝑙+1 = 𝑓𝐿𝑁L ( 𝑓𝐹𝐹 (L𝑙
𝐴𝑡𝑡 ) + L𝑙

𝐴𝑡𝑡 ) (6)
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Further, the outputs of each vision and language InterMCA modules are

subsequently fed into the vision and language IntraMSA modules.

3.2.2. Intra-Modality Alignment

The IntraMSA attention module illustrated in the Figure 3, aims to up-

date the vision and language information and to capture inner-modality at-

tention weights. For each modality, the information is updated according

to a feature fusion scheme. At first, we perform element-wise product to

the attention flow V𝑙+1 with the the visual region features V𝑙 , then after a

residual connection, features are fused by a linear additive function to yield

the final updated visual information. To keep the dimension of the updated

information consistent, a fully connected 𝑓𝐹𝐶 layer is employed. The updated

textual information is computed likewise, following the equations:

V̂ = 𝑓𝐹𝐶 ((V𝑙+1 � V𝑙) +V𝑙) (7)

L̂ = 𝑓𝐹𝐶 ((L𝑙+1 � L𝑙) + L𝑙) (8)

After updating original features based on cross-modal interactions, these fea-

tures are fed into the transformer unit to intensify the inner-modality infor-

mation, to preserve the original features and to establish inner-interactions

simultaneously. Following the Equations 1, 2, we have:

IntraMSAV→V = softmax

(Q
V̂

𝑙K>
V̂

𝑙

√
𝑑𝑘

)
V

V̂
𝑙 (9)

IntraMSAL→L = softmax

(Q
L̂
𝑙K>

L̂
𝑙

√
𝑑𝑘

)
V

L̂
𝑙 (10)
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Figure 4: The proposed cross-modal contrastive learning objective

These two modules can be stacked repeatedly, enabling to explore further

latent intra- and inter-modality alignments between image regions and texts.

3.3. Cross-Modal Contrastive Learning

We design a vision-language contrastive loss to force samples from lan-

guage and vision that are semantically related to be closer. Besides, a projec-

tion head is implemented on top of the IntraMSA and InterMCA modules to

map the image and text representations into a vector representation so that

the two training schemes do not interfere with each other. The projection

head is implemented as a nonlinear multiple-layer perceptron (MLP) with

one hidden layer, as it is more suitable for contrastive learning [22]. Then,
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𝐿2 normalization is applied to the visual-textual embeddings so that the in-

ner product between features can be used as distance measurements. In the

following parts, we denote cross-modal contrastive learning as CrossCL.

3.3.1. Intra-Modality and Inter-Modality Contrastive Learning

Let {x+
𝑖
} = {𝑥 𝑗 |𝑦 𝑗 = 𝑦𝑖, 𝑖 ≠ 𝑗}, {𝑡+

𝑖
} = {𝑡 𝑗 |𝑦 𝑗 = 𝑦𝑖, 𝑖 ≠ 𝑗} be the sets of all

positive samples from the same class of an anchor image 𝑥𝑖 and an anchor

text 𝑡𝑖 respectively, and {x−
𝑖
} = {𝑥 𝑗 |𝑦 𝑗 ≠ 𝑦𝑖, }, {𝑡−𝑖 } = {𝑡 𝑗 |𝑦 𝑗 ≠ 𝑦𝑖} be the sets

of the remaining negative samples from other classes within the minibatch

N. Not only the pairs (x𝑖, x 𝑗), (t𝑖, t 𝑗) from the same modality should be

mapped to a close location in the joint embedding space (intra-modality),

but also similar samples x𝑖 and t 𝑗 should be mapped in close proximity

(inter-modality). Therefore, the vision modality loss shown on the left of the

Figures 4a, 4b is computed as:

L𝑉 =

𝑁∑︁
𝑖=1

L𝑉→𝑉 (x𝑖) +
𝑁∑︁
𝑖=1

L𝐿→𝑉 (x𝑖) (11)

L𝑉→𝑉 (x𝑖)=
−1

|{x+
𝑖
}|

∑︁
x 𝑗 ∈{x+

𝑖
}
log

exp(x𝑖 · x 𝑗/𝜏)∑
x𝑘 ,𝑘≠𝑖

exp(x𝑖 · x𝑘/𝜏)
(12)

L𝐿→𝑉 (x𝑖)=
−1

|{t+
𝑖
}|

∑︁
t 𝑗 ∈{t+𝑖 }

log
exp(x𝑖 · t 𝑗/𝜏)∑

t𝑘 ,𝑘≠𝑖 exp(x𝑖 · t𝑘/𝜏)
(13)

where · is the similarity score between example pairs, 𝜏 is a scalar tempera-

ture hyper-parameter, N is the minibatch size, |{x+
𝑖
}| and |{t+

𝑖
}| denote the

number of positive samples of anchors x𝑖 and t𝑖 respectively. Similarly, the
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language modality loss shown on the right of Figures 4a, 4b is computed as:

L𝐿 =

𝑁∑︁
𝑖=1

L𝐿→𝐿 (t𝑖) +
𝑁∑︁
𝑖=1

L𝑉→𝐿 (t𝑖) (14)

Therefore, the learning objective is based on four contrastive components:

L𝐶𝑟𝑜𝑠𝑠𝐶𝐿 = L𝑉→𝑉 + 𝜆L𝐿→𝑉 + L𝐿→𝐿 + 𝜆L𝑉→𝐿 (15)

where 𝜆 is a hyper-parameter to control inter-modality alignment.

4. Experiments

4.1. Datasets

RVL-CDIP. The RVL-CDIP dataset is a subset of the IIT-CDIP Test

Collection presented in [23]. It consists of gray-scale labeled documents split

into 16 classes. The dataset is split into 320K training documents, 40K doc-

uments documents for validation and test sets.

Tobacco-3482. The Tobacco-3482 dataset is a smaller sample containing

3482 gray-scale document images presented in [24]. This dataset is formed

by documents belonging to 10 classes not uniformly distributed. For simplic-

ity, we denote the dataset as Tobacco.

NIST Special Database 6. The Nist-tax form [25] dataset is composed of

structured forms of 5595 pages of binary, black-and-white images of synthe-

sized documents containing hand-print and split into 20 different tax forms.

For simplicity, we denote the dataset as NIST.
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4.2. Experimental Settings

The proposed VLCDoC method is implemented in Tensorflow with 4

NVIDIA GeForce 12Gb RTX 2080Ti GPU. For the vision modality, docu-

ments are resized into a fixed size of (H, W)=(224, 224). The image region

feature vector extracted by the ViT-B/16 backbone is of 𝑑𝑣𝑖𝑠𝑛=(197, 768).

The final vision representation which is fed into the projection head is of

dimension 𝑑=768. As for the textual data, we tokenize the plain text 𝑡𝑙𝑎𝑛𝑔

using a word-peace tokenizer to get 𝑡𝑡𝑜𝑘 . Each input sequence is expected

to start with a [𝐶𝐿𝑆] token, and should end with a [𝑆𝐸𝑃] token. The 𝑡𝑡𝑜𝑘

is then represented as: 𝑡𝑡𝑜𝑘 = [𝐶𝐿𝑆], 𝑡𝑡𝑜𝑘1 , 𝑡𝑡𝑜𝑘2 , ..., 𝑡𝑡𝑜𝑘𝑛 , [𝑆𝐸𝑃], where 𝑛=197

is the maximum sequence length. For each document, if 𝑛 >197, the input

sequence is truncated so that it fits the desired length. For sequences that

are shorter than 𝑛 <197, they are padded until they are 𝑛 =197 long. In

the pre-training phase, the model is trained using AdamW optimizer with a

learning rate of 2e-5, linear warmup ratio to 0.1 and a linear decay. We set

the batch size to 64 and we use the pre-trained weights of both ViT-B/16

and BERT𝐵𝑎𝑠𝑒 uncased backbones. We conduct pre-training for 100 epochs

for the RVL-CDIP and Tobacco datasets. We fine-tune our network on 50

epochs for all datasets, we use Adam optimizer with learning rate of 5e-5.

For Tobacco and NIST datasets, we split the original sets to 80% for train-

ing, and 10% for validation and test. The temperature parameter 𝜏 is set

to 0.1, and 𝜆 is set to 0.5. Note that we didn’t use any type of data aug-

mentation during pre-training, and we kept the OCRed text as is without
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Table 1: Ablation study on VLCDoC on cross-modality attention components, pre-trained
on Tobacco dataset

Pre-training setting IntraMSA InterMCA #Params Accuracy(%)

-vision-only

198M 85.71√
201M 86.66√
209M 87.20√ √
217M 90.94

-language-only

198M 86.01√
201M 86.31√
209M 87.50√ √
217M 90.62

any pre- or post-processing. Note that the InterMCA and IntraMSA mod-

ules in our method are flexibly stacked two times to enhance the modeling

of inter-modality and intra-modality relations during pre-training. We split

the query, key, and value vectors of the visual features and textual features

into four heads and concatenate the results in different sub-spaces.

4.3. Ablation Study

We conduct ablation studies to characterize our VLCDoC network on

the low-scale Tobacco dataset. We analyze the following contributions of: i)

validating the effectiveness of the proposed InterMCA and IntraMSA atten-

tion modules in learning generic cross-modal representations, ii) investigat-

ing whether contrastive learning enhances the cross-modal representations,

resulting in performance gain in terms of classification accuracy, iii) illustrat-

ing the generality and robustness of the proposed VLCDoC network.
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4.3.1. Effects of Attention Mechanisms

To investigate the effectiveness of the attention mechanisms used in our

VLCDoC model, we evaluate the performance of the learned cross-modal

representations w/ and w/o the attention modules. Note that the evaluation

protocol is uni-modal based. At first, we consider the scheme where the vision

and language modalities are pre-trained independently. In Table 1, we ob-

serve a significant drop to 85.71%, and 86.01% in classification performance

when removing both attention mechanisms in the vision and language modal-

ities respectively. When removing only the InterMCA module, we see that

our model manages to improve slightly the performance of both modalities

to 86.66% and 86.31% for the vision-language modalities. Further, removing

the IntraMSA and keeping only the InterMCA module enables multimodal

pre-training in an end-to-end fashion. The reported results in Table 1 show

that our model gains in performance, and achieves the best performance with

90.94%, 90.62% top-1 accuracy for the vision and language modalities. The

improvement of the classification accuracy is attributed to the flexible atten-

tion flows adopted in both the InterMCA and IntraMSA modules, which have

shown their effectiveness and capability to enhance vision-language relations

by capturing the relevant semantic information of images and sentences. Fig-

ure 5 illustrates how the document data is arranged in a high-dimensional

space without/with IntraMSA and InterMCA attention modules respectively

(see Figure 5a, 5b), which is based on a T-Distributed Stochastic Neighbor

Embedding (T-SNE) algorithm. Therefore, we conclude that both the qual-
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(a) T-SNE Visualization of VLCDoC without InterMCA and IntraMSA modules

(b) T-SNE Visualization of VLCDoC with InterMCA and IntraMSA modules.

Figure 5: T-SNE vision and language embedding visualization of VLCDoC.

itative and quantitative results demonstrate the effectiveness of cross-modal

learning and the importance of both attention modules in learning more ef-

fective cross-modal representations during the pre-training stage.

4.3.2. Effects of Cross-Contrastive Learning

The Cross-modal Contrastive Loss (CrossCL) contains two components:

intra- and inter-modality alignments. We show the effects of CrossCL on

the proposed method against the standard supervised contrastive learning

(SCL) loss. Table 2 shows that the CrossCL loss has a positive impact on

the results. The VLCDoC with CrossCL loss yields the best performance
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Table 2: Top-1 accuracy (%) comparison results of our proposed CrossCL loss against the
SCL and SSCL losses on the Tobacco dataset

Model Modality CrossCL (%) SCL (%)

VLCDoC Vision-only 90.94 89.88
Language-only 90.62 89.29

Table 3: Cross-dataset test on datasets with different size and document types. Tob,
RVL, and Nist denote Tobacco, RVL-CDIP, and Nist-tax form benchmark datasets. Tob
→ RVL denotes pre-train on Tobacco, and test on RVL-CDIP.

Model Accuracy (%)

Tob → RVL RVL → Tob RVL → Nist

vision-only modality
- EAML [5] 78.89 84.82 -
- VLCDoC 79.04 89.73 99.99

language-only modality
- EAML [5] 79.06 83.72 -
- VLCDoC 81.96 89.88 99.99

gain compared to VLCDoC with the SCL loss. This indicates the impor-

tance of CrossCL by enforcing the compactness of intra-class representations

(intra-modality), while separating inter-class features by contrasting positive

and negative sample pairs within and across each modality. Note that, as

described in Equation 15, the CrossCL can be vision cue-based or language

cue-based, thus we have two different CrossCL presented in Table 2.

4.3.3. Cross-Dataset Test

To illustrate the generality and the robustness of the learned cross-modal

features, we validate our VLCDoC model on document classification datasets

with different size and document types. We refer as the cross-dataset test to

the process of pre-training our VLCDoC on dataset 𝐴, and fine-tune it and
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test it on dataset 𝐵. The motivation behind is to confirm whether our model

displays a good generality in terms of the document classification task. Since

there is no publicly available cross-document datasets for this specific task,

we evaluate the ability of our model to perform document classification on

a new set of documents that had not been seen by our model during the

pre-training phase. As denoted in Table 3, RVL-CDIP→Tobacco denotes

that pre-training is firstly conducted on the RVL-CDIP dataset, then fine-

tuning is conducted on the Tobacco dataset. Finally, the inference phase is

conducted on the Tobacco dataset as well. Note that during the fine-tuning

stage, we only train linear classifiers on top of the final embeddings of the

pre-trained vision and language encoders, with the parameters of the rest

of the layers freezed. Thus, even though the document categories are differ-

ent between the dataset 𝐴 used for pre-training and test dataset 𝐵 used for

fine-tuning and test, we can still evaluate our model on dataset 𝐵. As such,

we compare our model with the related work EAML [5]. We first pre-train

the model on Tobacco dataset, then we conduct fine-tuning and test on the

RVL-CDIP dataset. The reported results in Table 3 show that we slightly

outperform EAML [5] on both vision and language modalities. Even-though

EAML is an ensemble network trained with a different setting, based on

vision, language, and fusion modalities, the results confirm that our model

benefits from cross-modal pre-training with small amount of document data,

achieving better performance with only vision and language modalities. Fol-

lowing similar protocol, we pre-train our encoder on RVL-CDIP, and then
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Figure 6: Overview of the process followed when a visual or textual query is sent to the
framework. To perform document classification, we add a set of fully connected layers on
top of the pre-trained vision and language encoders with the last layer used as a classifier
during the fine-tuning phase, where 𝐿𝐶𝐸 is the cross-entropy loss. The process of document
classification is computed as follows: In the multi-modal fine-tuning phase, we concatenate
the layers of each modality (Dense1 for vision data, Dense2 for language data) and pass
the multi-modal information through (Dense3, Dense4). Meanwhile, in the uni-modal
fine-tuning phase, the connection between layers Dense1 and Dense2 in the concatenation
layer is skipped. Instead, the connection is made directly to the Dense4 layer.

conduct fine-tuning and test on Tobacco and NIST datasets with fewer doc-

ument data. We clearly see that our model outperforms the work EAML

with a significant margin of 4.91% and of 6.16% for vision and language

modalities respectively. As for NIST dataset, the results achieve 99.99%

classification accuracy for both modalities. These results demonstrate that

our model displays a good generality which enables to learn a robust and

domain-agnostic feature representation for classifying documents with differ-

ent document types and document data size.

4.4. Results

The comparison between the proposed VLCDoC network and existing

methods on the large-scale RVL-CDIP document classification dataset is
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Table 4: Top-1 accuracy (%) comparison results of different document classification meth-
ods evaluated on the of RVL-CDIP dataset. V+L denotes vision+language modalities

Method Train Data Accuracy(%) #Params

vision methods

VGG-16 [26] 320k 90.31 138M
ResNet-50 [26] 320k 91.13 -
Ensemble [27] 320k 92.21 -
DiT𝐵𝑎𝑠𝑒 [28] 42M 92.11 87M
VLCDoC (Vision-only) 320k 92.64 86M

(language+layout) methods

BERT𝐵𝑎𝑠𝑒 [21] - 89.81 110M
RoBERTa𝐵𝑎𝑠𝑒 [29] - 90.06 125M
VLCDoC (Language-only) 320k 91.37 110M
LayoutLM𝐵𝑎𝑠𝑒 [6] 11M 91.78 113M

(vision+language) methods

Multimodal [30] 320k 90.6 -
Ensemble [4] 320k 93.07 -
VLCDoC (V+L) 320k 93.19 217M
EAML [5] 320k 94.44 -

(vision+language+layout) methods

SelfDoc [10] 320k 92.81 -
LayoutLM𝐵𝑎𝑠𝑒 [6] 11M 94.42 160M
TILT𝐵𝑎𝑠𝑒 [31] 1M 95.25 230M
LayoutLMv2𝐵𝑎𝑠𝑒 [8] 11M 95.25 200M
LayoutLMv3𝐵𝑎𝑠𝑒 [9] 11M 95.44 133M
DocFormer𝐵𝑎𝑠𝑒 [11] 5M 96.17 183M

presented in Table 4. The compared methods cover various training strate-

gies with different modalities used to perform document classification. These

methods include vision-only, language-only, vision+language, and vision+lang-

uage+layout methods. Although our VLCDoC network learns feature space

with vision and language cues, it uses both uni-modal (either vision or lan-

guage) and multi-modal (vision+language) modalities to classify document
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images during fine-tuning and inference phases as illustrated in Figure 6.

Note that for the uni-modal task, it is performed on top of the pre-trained

vision and language encoders, by adding a fully-connected layer, and the

softmax function to perform the classification task. In Table 4, we can see

that our VLCDoC model achieves good performance with 92.64% top-1 ac-

curacy regarding the vision-only modality setting. As for the uni-modal

language-only setting, we also achieve good performance of 91.37% accu-

racy compared to the language+layout methods with large amount or pre-

training data (LayoutLM with 11M vs VLCDoC with 320k). Therefore, in

the multi-modal fine-tuning setting, where both vision+language modalities

are used, the results reported demonstrate that our proposed VLCDoC (Vi-

sion+Language) outperforms both uni-modal modalities with an accuracy of

93.19% compared to 92.64% and 91.37% for vision and language modalities

respectively. Meanwhile, it achieves competitive results against the methods

that include layout information in the pre-training setting (e.g. SelfDoc [10].

Finally, the results indicate that a vision encoder-only transformer-based

architecture can help achieve compelling results in the uni-modal setting,

but still struggles to boost the performance in the multi-modal fine-tuning

setting against EAML [5] which is based on a DCNN ResNetInceptionV2

architecture [32]. Therefore, even-though vision transformers have achieved

competitive results with DCNNs in visual recognition domain, inductive bias

makes them more data-hungry than common DCNNs to avoid over-fitting in

downstream applications with less data such as the document understanding
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domain[33]. Thus, vision, language, and layout-based transformer methods

have shown to be effective in learning accurate representations with a large

amount of pre-training data of 11M documents, demonstrating the effective-

ness of transformers against DCNNs. Nevertheless, our proposed VLCDoC

method achieves compelling classification results and reduces the gap be-

tween vision, language, and layout-based transformer methods with a low

amount of pre-training data, and demonstrates a good generalization ability

on unseen document data.

5. Conclusion and Future Work

In this paper, we proposed a novel cross-modal representation learning

model for document classification, which models the intra- and inter-modality

relations between vision-language cues. We have introduced InterMCA and

IntraMSA attention mechanisms which incorporate visual-textual features to

further improve the cross-modal representations. We have performed a de-

tailed analysis and evaluation on each module, demonstrating the suitability

of the proposed approach. We have demonstrated a good generality of our

multimodal transformer-based model to the document classification task, en-

abling to classify documents in different domains. We will push forward two

research lines for the future. On the one hand, we will carry on further re-

search on the integration of a third layout modality in our transformer-based

multimodal model. We would like to propose a better solution for layout

integration in our vision-language model. On the other hand, we would like
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to explore new pre-text task strategies to improve document understanding

in a pretrain-then-finetune paradigm. Thus, we will further tune our model

on different downstream applications related to document AI with more chal-

lenging heterogeneous data.
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