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Abstract

The advent of recurrent neural networks for handwriting recognition marked

an important milestone reaching impressive recognition accuracies despite

the great variability that we observe across different writing styles. Sequen-

tial architectures are a perfect fit to model text lines, not only because of

the inherent temporal aspect of text, but also to learn probability distribu-

tions over sequences of characters and words. However, using such recurrent

paradigms comes at a cost at training stage, since their sequential pipelines

prevent parallelization. In this work, we introduce a novel method that

bypasses any recurrence during the training process with the use of trans-

former models. By using multi-head self-attention layers both at the visual

and textual stages, we are able to tackle character recognition as well as
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to learn language-related dependencies of the character sequences to be de-

coded. Our model is unconstrained to any predefined vocabulary, being able

to recognize out-of-vocabulary words, i.e. words that do not appear in the

training vocabulary. We significantly advance over prior art and demonstrate

that satisfactory recognition accuracies are yielded even in few-shot learning

scenarios.

Keywords: Handwriting Text Recognition, Transformers, Self-Attention,

Implicit Language Model

1. Introduction

Handwritten Text Recognition (HTR) frameworks aim to provide ma-

chines with the ability to read and understand human calligraphy. From

the applications perspective, HTR is relevant both to digitize the textual

contents from ancient document images in historic archives as well as con-5

temporary administrative documentation such as cheques, forms, etc. Even

though research in HTR began in the early sixties [1], it is still considered

as an unsolved problem. The main challenge is the huge variability and am-

biguity of the strokes composing words encountered across different writers.

Fortunately, in most cases, the words to decipher do follow a well defined set10

of language rules that should be also modelled and taken into account in or-

der to discard gibberish hypotheses and yield higher recognition accuracies.

As a result, HTR is often approached by combining technologies from both

computer vision and natural language processing communities.

Handwritten text is a sequential signal in nature, which is usually a se-15

quence of characters from left to right in Latin languages. Thus, HTR ap-
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proaches usually adopted temporal pattern recognition techniques to address

it. The early approaches based on Hidden Markov Models (HMM) [2] evolved

towards the use of Deep Learning techniques, in which Bidirectional Long

Short-Term Memory (BLSTM) networks [3] became the standard solution.20

Recently, inspired by their success in the applications such as automatic

translation or speech-to-text, Sequence-to-Sequence (Seq2Seq) approaches,

conformed by encoder-decoder networks led by attention mechanisms have

started to be applied for HTR [4]. All the above methods are not only a good

fit to process images sequentially, but also have, in principle, the inherent25

power of language modelling, i.e. to learn which character is more probable

to be found after another in their respective decoding steps. Nonetheless,

this ability of language modelling has proven to be limited, since recogni-

tion performances are in most cases still enhanced when using a separate

statistical language model as a post-processing step [5].30

Despite the fact that attention-based encoder-decoder architectures have

started to be used for HTR with impressive results, one major drawback still

remains. In all of those cases, such attention mechanisms are still used in con-

junction with a recurrent network, either BLSTMs or Gated Recurrent Unit

(GRU) networks. The use of such sequential processing deters paralleliza-35

tion at training stage, and severely affects the effectiveness when processing

longer sequence lengths by imposing substantial memory limitations.

Motivated by the above observations, Vaswani et al. proposed in [6] the

seminal work on the Transformer architecture. Transformers rely entirely on

attention mechanisms, relinquishing any recurrent designs. Stimulated by40

such advantage, we propose to address the HTR problem by an architecture
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inspired on transformers, which dispenses of any recurrent network. By using

multi-head self-attention layers both at the visual and textual stages, we aim

to tackle both the proper step of character recognition from images, as well

as to learn language-related dependencies of the character sequences to be45

decoded.

The use of transformers in different language and vision applications have

shown higher performances than recurrent networks while having the edge

over BLSTMs or GRUs by being more parallelizable and thus involving re-

duced training times. Our method is, to the best of our knowledge, the first50

non-recurrent approach for HTR. Moreover, the proposed transformer ap-

proach is designed to work at character level, instead at the commonly used

wordpiece level [7] in translation or speech recognition applications. By using

such design we are not restricted to any predefined fixed vocabulary, so we

are able to recognize out-of-vocabulary (OOV) words, i.e. never seen during55

training. Competitive state-of-the-art results on the public IAM dataset are

reached even when using a small portion of training data.

The main contributions of our work are summarized as follows. i) For the

first time, we explore the use of transformers for the HTR task, bypassing

any recurrent architecture. We attempt to learn, with a single unified ar-60

chitecture, to recognize character sequences from images as well as to model

language, providing context to distinguish between characters or words that

might look similar. The proposed architecture works at character level, waiv-

ing the use of predefined lexicons. ii) By using a pre-training step using syn-

thetic data, the proposed approach is able to yield competitive results with a65

limited amount of real annotated training data. iii) Extensive ablation and
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comparative experiments are conducted in order to validate the effectiveness

of our approach. Our proposed HTR system achieves new state-of-the-art

performance on the public IAM dataset.

2. Related Work70

The recognition of handwritten text has been commonly approached by

the use of sequential pattern recognition techniques. Text lines are processed

along a temporal sequence by learning models that leverage their sequence

of internal states as memory cells, in order to be able to tackle variable

length input signals. Whether we analyze the former approaches based on75

HMMs [2, 8, 9] or the architectures based on deep neural networks such

as BLSTMs [3], Multidimensional LSTMs [10, 11] (MDLSTM) or encoder-

decoder networks [12, 13, 14, 15, 4], they all follow the same paradigm.

Although all those approaches use recurrent architectures to properly conceal

and learn serial information, visually, but also from the language modelling80

perspective, they all suffer of the lack of parallelization during the training

stage. Moreover, in order to efficiently train deep learning based approaches,

a huge amount of labeled training data is required. Some approaches like [16,

17, 18] alleviate the cost and effort of collecting such amount of real annotated

training data by using synthetically generated cursive data with electronic85

true-type fonts. Which, in turn, having unlimited annotated data for free

and training models that are less prone to overfit to a set of specific writing

styles, exaggerate even more the computational costs during the training

process.

Vaswani et al. presented in [6] the Transformer architecture. Their pro-90
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posal relies entirely on the use of attention mechanisms, avoiding any recur-

rent steps. Since the original publication, the use of transformers has been

popularized in many different computer vision and natural language process-

ing tasks such as automatic translation [19], speech-to-text applications [20]

and emotion recognition [21]. Its use has started to eclipse recurrent ar-95

chitectures such as BLSTMs or GRUs for such tasks, both by being more

parallelizable, facilitating training, and by having the ability to learn power-

ful language modelling rules of the symbol sequences to be decoded.

The transformer architecture has been used lately to recognize text in nat-

ural scenes [22]. In such works, the original transformers architecture, often100

applied to one-dimensional signals (i.e. text, speech, etc.), has been adapted

to tackle two-dimensional input images. Image features are extracted by the

use of CNNs [23], two-dimensional positional encodings [24, 25] or additional

segmentation modules [26] help the system locate textual information amidst

background clutter. However, all such works present some limitations when105

dealing with handwritten text lines. On the one hand, all such architectures

work with fixed image size whereas for handwriting recognition we have to

face variable length inputs. On the other hand, they work at individual

word level, whereas in handwriting recognition we have to face much longer

sequences. Finally, despite also having its own great variability, scene text110

is often much legible than cursive handwriting, since in most of the cases

words are formed by individual block letters, which, in turn, are easier to

be mimicked by synthesized data. Recently, there are some contemporary

works dealing with handwriting recognition problems. Zhao et al. [27] pro-

posed a transformer-based mathematical expression recognizer. In addition,115
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Mostafa et al. [28] and Tsochatzidis et al. [29] introduced transformer-based

handwriting recognizers for Arabic and Greek languages, respectively.

Summarizing, state-of-the-art handwriting recognition based on deep re-

current networks have started to reach decent recognition results, but are too

computationally demanding at training stage. Moreover, albeit they shall120

have the ability to model language-specific dependencies, they usually fall

short of inferring adequate language models and need further post-processing

steps. In this paper we propose, for the first time, the use of transformers

for the HTR task, bypassing any recurrent architecture. A single unified ar-

chitecture, both recognizes long character sequences from images as well as125

models language at character level, waiving the use of predefined lexicons.

3. Proposed Method

3.1. Problem Formulation

Let {X ,Y} be a handwritten text dataset, containing images X of hand-

written text lines, and their corresponding transcription strings Y . The al-130

phabet defining all the possible characters of Y (letters, digits, punctuation

signs, white spaces, etc.), is denoted as A. Given pairs of images xi ∈ X

and their corresponding strings yi ∈ Y , the proposed recognizer has the abil-

ity to combine both sources of information, learning both to interpret visual

information and to model language-specific rules.135

The proposed method’s architecture is shown in Figure 1. It consists of

two main parts. On the one hand a visual feature encoder aimed at extracting

the relevant features from text-line images and at focusing its attention at the

different character locations. Subsequently, the text transcriber is devoted
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Figure 1: Overview of the architecture of the proposed method, which consists of Visual

Feature Encoder (the left part) and Text Transcriber (the right part). The Visual Feature

Encoder includes CNN nets (ResNet), temporal encoding and visual self-attention mod-

ules, while the Text Transcriber includes text encoding (pre-process and parallel decode),

language self-attention modules and mutual-attention modules. Note that the mutual-

attention modules bridge the information of both visual features and textual features.
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to output the decoded characters by mutually attending both at the visual140

features as well as the language-related features. The whole system is trained

in an end-to-end fashion, learning both to decipher handwritten images as

well as modelling language.

3.2. Visual Feature Encoder

The role of the visual feature encoder is to extract high-level feature145

representations from an input handwritten image x ∈ X . It will encode

both visual content as well as sequential order information. This module is

composed by the following three parts.

3.2.1. CNN Feature Encoder

Input images x of handwritten text-lines, which might have arbitrary150

lengths, are first processed by a Convolutional Neural Network. We ob-

tain an intermediate visual feature representation Fc of size f . We use the

ResNet50 [30] as our backbone convolutional architecture. Such visual fea-

ture representation has a contextualized global view of the whole input image

while remaining compact.155

3.2.2. Temporal Encoding

Handwritten text images are sequential signals in nature, to be read in

order from left to right in Latin scripts. The temporal encoding steps are

aimed to leverage and encode such important information bypassing any

recurrency.160

In a first step, the three-dimensional feature Fc is reshaped into a two-

dimensional feature by keeping its width, i.e. obtaining a feature shape

(f × h,w). This feature map is later fed into a fully connected layer in order
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to reduce f ×h back to f . The obtained feature F
′
c , with the shape of (f, w),

can be seen as a w-length sequence of visual vectors.165

However, we desire that the same character appearing at different posi-

tions of the image has different feature representations, so that the attention

mechanisms are effectively and unequivocally guided. That is, we want that

the visual vectors F
′
c loose their horizontal shift invariance. Following the

proposal from Vaswani et al. [6], a one-dimensional positional encoding us-170

ing sine and cosine functions is applied.

TE(pos, 2i) = sin
( pos

100002i/f

)
TE(pos, 2i + 1) = cos

( pos

100002i/f

)
, (1)

where pos ∈ {0, 1, 2, . . . , w − 1} and i ∈ {0, 1, 2, . . . , f − 1}.

F
′
c and TE, sharing the same shape, are added along the width axis. A

final fully connected layer produces an abscissa-sensitive visual feature F̄c

with shape (f, w).175

3.2.3. Visual Self-Attention Module

To further distill the visual features, self-attention modules are applied

four times upon F̄c. The multi-head attention mechanism from [6] is applied

using eight heads. This attention module takes three inputs, namely the

query Qc, key Kc and value Vc, where Qc = Kc = Vc = F̄c. The correlation180

information is obtained by:

v̂ic = Softmax

(
qicKc√

f

)
Vc, (2)
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where qic ∈ Qc and i ∈ {0, 1, . . . , w − 1}. The final high-level visual feature

is F̂c = {v̂0c , v̂1c , . . . , v̂w−1
c }.

3.3. Text Transcriber

The text transcriber is the second part of the proposed method. It is in185

charge of outputting the decoded characters, attending to both the visual

features as well as the language-specific knowledge learnt form the textual

features. It is worth to note that unlike translation of speech-to-text trans-

former architectures, our text transcriber works at character level instead of

word-level. It will thus learn n-gram like knowledge from the transcriptions,190

i.e. predicting the next most probable character after a sequence of decoded

characters. The text transcriber consists of three steps, the text encoding,

the language self-attention step and the mutual-attention module.

3.3.1. Text Encoding

Besides the different characters considered in alphabet A, we require some195

symbols without textual content for the correct processing of the text-line

string. Special character ⟨S⟩ denotes the start of the sequence, ⟨E⟩ the end

of the sequence, and ⟨P ⟩ is used for padding. The transcriptions y ∈ Y are

extended to a maximum length of N characters in the prediction.

A character-level embedding is performed by means of a fully-connected

layer that maps each character from the input string to an f -dimensional

vector. The same temporal encoding introduced in eq. 1 is used here to

obtain

Ft = Embedding (y) + TE, (3)

where Ft has the shape of (f,N).200
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In the decoding step of Seq2Seq approaches [13, 4], every decoded char-

acter is iteratively fed again to the decoder, to predict the next character,

thus inhibiting its parallelization. Contrary, in the transformer paradigm,

all possible decoding steps are fed concurrently at once with a masking op-

eration [6]. To decode the j-th character from y, all characters at positions205

greater than j are masked so that the decoding only depends on predictions

produced prior to j. Such a parallel processing of what used to be different

time steps in recurrent approaches drastically reduces training time.

3.3.2. Language Self-attention Module

This module follows the same architecture as in Section 3.2.3 and aims210

to further distill the text information and learn language-specific properties.

F̂t is obtained after the self-attention module implicitly delivers n-gram-like

features, since to decode the j-th character from y all character features prior

to j are visible.

3.3.3. Mutual-attention Module215

A final mutual self-attention step is devoted to align and combine the

learned features form the images as well as from the text strings. We follow

again the same architecture from Section 3.2.3, but now the query Qt comes

from the textual representation F̂t while the key Kc and value Vc are fed with

the visual representations F̂c220

v̂ict = Softmax

(
qjtKc√

f

)
Vc, (4)

where qjt ∈ Qt and j ∈ {0, 1, . . . , N − 1}. The final combined representation

is F̂ct = {v̂0ct, v̂1ct, . . . , v̂N−1
ct }.
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The output F̂ct is expected to be aligned with the transcription Y . Thus,

by feeding the F̂ct into a linear module followed by a softmax activation

function, the final prediction is obtained.225

3.4. Inference on Test Data

When evaluating on test data, the transcriptions Y are not available. The

text pipeline is initialized by feeding the start indicator ⟨S⟩ and it predicts

the first character by attending the related visual part on the input hand-

written text image. With the strategy of greedy decoding, this first predicted230

character is fed back to the system, which outputs the second predicted char-

acter. This inference process is repeated in a loop until the end of sequence

symbol ⟨E⟩ is produced or when the maximum output length N is reached.

4. Experimental Evaluation

4.1. Dataset and Performance Measures235

We conduct our experiments on the popular IAM handwritten dataset [31],

composed of modern handwritten English texts. We use the RWTH parti-

tion, which consists of 6482, 976 and 2914 lines for training, validation and

test, respectively. The size of alphabet |A| is 83, including special symbols,

and the maximum length of the output character sequence is set to 89. All240

the handwritten text images are resized to the same height of 64 pixels while

keeping the aspect ratio, which means that the text line images have variable

length. To pack images into mini-batches, we pad all the images to the width

of 2227 pixels with blank pixels.

Character Error Rate (CER) and Word Error Rate (WER) [32] are used

for the performance measures. The CER is computed as the Levenshtein
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distance which is the sum of the character substitutions (Sc), insertions (Ic)

and deletions (Dc) that are needed to transform one string into the other,

divided by the total number of characters in the groundtruth (Nc). Formally,

CER =
Sc + Ic + Dc

Nc

(5)

Similarly, the WER is computed as the sum of the word substitutions (Sw),

insertions (Iw) and deletions (Dw) that are required to transform one string

into the other, divided by the total number of words in the groundtruth (Nw).

Formally,

WER =
Sw + Iw + Dw

Nw

(6)

4.2. Implementation Details245

a) Real data from IAM dataset

b) Synthetically rendered text-lines with truetype fonts

Figure 2: Examples of real and synthetic training handwritten text-line images.
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4.2.1. Hyper-Parameters of Networks

In the proposed architecture, the feature size f is 1024. We use four

blocks of visual and language self-attention modules, and each self-attention

module has eight heads. We use 0.1 dropout setting for every dropout layer.

In the text transcriber, all the transcriptions include the extended special250

symbols ⟨S⟩ and ⟨E⟩ at the beginning and at the end, respectively. Then,

they are padded to 89 length with a special symbol ⟨P ⟩ to the right, which is

the maximum number of characters in the prediction N . The output size of

the softmax is 83, which is the size of the alphabet A, including upper/lower

cased letters, punctuation marks, blank space and special symbols.255

4.2.2. Optimization Strategy

We adopt label smoothing mechanism [33] to prevent the system from

making over-confident predictions, which is also a way of regularization. As

the ground-truth are one-hot vectors with binary values, label smoothing is

done by replacing the 0 and 1 with
ε

|A|
and 1− |A| − 1

|A|
ε, where ε is set to 0.4260

in this paper. Based on the batch size of 48, we utilize Adam optimizer [34]

for the training process with an initial learning rate of 2 ·10−4, while reducing

the learning rate by half every 20 epochs. The implementation of this system

is based on PyTorch [35] and performed on a NVIDIA Cluster. The code

will be publicly available.265

4.3. Pre-training with Synthetic Data

Deep learning based methods need a large amount of labelled training

data to obtain a well generalized model. Thus, synthetic data is widely used

to compensate the scarcity of training data in the public datasets. There
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are some popular synthetically generated handwriting datasets available [36,270

37], but they are at word level. For this reason we have created our own

synthetic data at line level for pre-training. First, we collect a text corpus

in English from online e-books and end up with over 130, 000 lines of text.

Second, we select 387 freely available electronic cursive fonts and use them to

randomly render text lines from the first step. Finally, by applying a set of275

random augmentation techniques (blurring/sharpening, elastic transforming,

shearing, rotating, translating, scaling, gamma correcting and blending with

synthetic background textures), we obtain a synthetic dataset with 138, 000

lines. The comparison between the synthetic data and the real data is shown

in Figure 2.280

4.4. Ablation Studies

In the ablation studies, all the experiments are trained with the IAM

training set at line-level, and then early-stopped by the CER of the validation

set, which is also utilized as an indicator to choose the hyper-parameters as

shown in Table 1 2 3.285

4.4.1. Architecture of CNN Feature Encoder

We have explored different popular Convolutional Neural Networks for

the feature encoder detailed in Section 3.2.1. The best results were obtained

with ResNet models. We provide a modified version of ResNet architecture,

which has a stride value of 1 instead of 2 from the original ResNet at the last290

convolutional layer. Thus, the output features become 2-times bigger than

that of the original ResNet method. From Table 1, the best performance is

achieved with a modified version of ResNet50.
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Table 1: Ablation study on Convolutional architectures. ∗ indicates modified architectures.

Results are shown on IAM validation set.

CNN CER (%) WER (%)

ResNet34 6.33 22.63
ResNet34∗ 5.44 20.13
ResNet50 5.49 20.93
ResNet50∗ 4.86 18.65

4.4.2. Function of Temporal Encoding

In both the visual feature encoder and the text transcriber, we have used295

temporal encoding in order to enforce an order information to both visual

and textual features. Nonetheless we want to analyze its impact. In Table 2,

it is clear that using temporal encoding at text level boosts the performance

drastically from 7.72% to 4.86%, and from 6.33% to 5.52%, depending on

whether we use it at image level or not. The best performance is reached when300

using the temporal encoding step both for image and text representations.

Table 2: Ablation study on the use of temporal encoding in image and text levels. Results

are shown on IAM validation set.

Image level Text level CER (%) WER (%)

− − 6.33 21.64
✓ − 7.72 24.70
− ✓ 5.52 20.72
✓ ✓ 4.86 18.65

4.4.3. Role of Self-Attention Modules

Self-attention modules have been applied in both image and text levels. In

Table 3 we analyze their effect in our system. We observe that the language
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self-attention module does play an important role to improve the performance305

from 7.71% to 4.86%, and from 7.78% to 4.89%, with and without the visual

self-attention module, respectively. Our intuition is that the language self-

attention module actually does learn language-modelling information. This

implicitly learned language model is at character level and takes advantage

of the contextual information of the whole text-line, which not only boosts310

the recognition performance but also keep the capability to predict out-of-

vocabulary (OOV) words (showcases in Table 5). However, the visual self-

attention module barely improves the performance comparing the pairs of

first two rows or the last two rows in Table 3. The intuition is that the former

CNN module has already extracted good visual features for the handwritten315

input, so there is very little opportunity for the visual self-attention module

to further boost the performance.

Furthermore, the ”Time” column in Table 3 illustrates how much extra

time costs when equipping either visual or textual self-attention modules.

We see that the visual self-attention module costs extra 21.61% time for the320

system training, while the language self-attention module only spends 8.85%

more time to do the same job. Considering the little improvement and huge

training time cost of the visual self-attention module, it is suggested to use

only the language self-attention module in real-world use cases as a trade-off.

But in this paper, we would like to exploit all the modules to achieve the best325

performance. Thus, both of the visual and textual self-attention modules are

equipped in the system for the following experiments.

The image widths and text lengths on IAM text-line training set have

been analyzed statistically in Table 4. Based on the median image width
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of 1751 pixels and median text length of 43 characters, we have monitored330

how the training speed changes in terms of different image widths and text

lengths as shown in Figure 3. Usually, a long handwritten image always

roughly refers to a long text groundtruth, we put the two scales of both

image pixels and text characters together. Note that, the image widths and

the text lengths are not perfectly aligned in the figure. From Figure 3, we335

appreciate that squeezing input images with a shorter width always lead to

a faster training speed.

Table 3: Ablation study on visual and language self-attention modules, where results

are shown on IAM validation set. The ”Time” column represents the training time in

percentage based on the baseline (the first row) without neither visual nor textual self-

attention modules.

Image level Text level CER (%) WER (%) Time (%)

− − 7.78 29.78 −
✓ − 7.71 28.50 +21.61
− ✓ 4.89 18.57 +8.85
✓ ✓ 4.86 18.65 +28.54

Table 4: The statistic of the image widths and text lengths on IAM text-line training set.

Min Max Median

Image width (pixels) 104 2260 1751
Text length (num. of chars) 1 80 43

We showcase in Figure 5 some qualitative results on text-line recogni-

tion, where we visualize the attention maps as well. The attention maps are

obtained by averaging the mini attention maps across different layers and340
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Figure 3: Training speed of different image widths and text lengths. The text length has

been set to the median number of 43 characters for the experiments on image widths (blue

curve), while the image width has been kept as the median width of 1751 pixels for the

experiments on text lengths (red curve).

different heads. Those visualizations prove the successful alignment between

decoded characters and images.

4.5. Detailed Comparison with Seq2Seq Model

In order to provide a fair comparison between the proposed architecture

and recurrent-based solutions, we re-implemented a state-of-the-art recurrent345

handwriting recognition pipeline, and we train and evaluate those under the

exact same circumstances. Following the methods proposed in [13, 4] we built

a sequence-to-sequence recognizer composed of an encoder, a decoder and an

attention mechanism. The encoder consists of a VGG19-BN [38] and a two-

layer Bidirectional Gated Recurrent Units (BGRU) with feature size of 512.350
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Table 5: Examples of handwritten text-line recognition results with OOV words on IAM

test set, where the OOV words are highlighted.

Result been able to explain the textual movements by

Result This indicated how ephemeral in the Church had

Result Samuel in support of his thesis and quoted

Result of winds is needed for this effect of

Result fascinated by the way he looked when you

work for the movement, in 15to

work for the movement, Mr. 1stw

work for the movement, who 1sts

work for the movement, was late

m
or

e 
re

al
 d

at
a

20%

40%

60%

80%

100%

Gentleman was. So the driver peoped as

gentleman was. So the driver peep-peeped at

m
or

e 
re

al
 d

at
a

20%

40%

60%

80%

100%

the thoughtf came to me D'Like

the thought came to ine D'd like

m
or

e 
re

al
 d

at
a

20%

40%

60%

80%

100%

'frim?' John didn't answer. There was no print

fim?" joke didn't answer. There was no print

m
o
re

 r
ea

l 
d
a
ta

20%

40%

60%

80%

100%

Him?" John didn't answer. There was no point

Gim?" John didn't answer. There was no point

Figure 4: Performance of the transformer-based decodings for different amounts of real

training data.

The decoder is a two-layer one directional GRU with feature size of 512, and

we power the architecture with a location-based attention mechanism [39].
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Figure 5: Qualitative results on text-line recognition and visualization of attention maps

that coarsely align transcriptions and corresponding image characters.

All the dropout layers are set to 0.5. Label smoothing technique is also used

during the training process. The maximum number of predicted characters is

also set to 89. All the hyper-parameters in this sequence-to-sequence model355

are also exhaustively validated by ablation studies with validation data.

We first provide in Table 6, the CER and WER rates on the IAM test

set both when training the networks from scratch and just using the IAM

training data, and when pre-training the networks with synthetic data for

a later fine-tuning step on real data. We also provide the model size and360

the time taken per epoch during training. From Table 6, we can see that
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the proposed transformer-based method achieves a better recognition per-

formance than the sequence-to-sequence model, even with a heavy network

architecture. We have tried to make the sequence-to-sequence model compa-

rable with the transformer method, so that it ends up with 37M parameters.365

But normally the sequence-to-sequence model has much less parameters such

as 725k parameters in [40]. Thus, some sequence-to-sequence models might

advance in the training speed. But the heavier transformer architecture does

further boost the HTR performance. We also observe that both models ben-

efit from the use of synthetic pre-training, improving the final error rates370

quite noticeably for the transformers model, although such boost is not so

drastic for the sequence-to-sequence approach.

Table 6: Comparison between Recurrent and Transformers.

Method CER (%) WER (%) Time(s) Param(M)

Seq2Seq 11.91 37.39 338.7 37
+ Synth 10.64 33.64 338.7 37

Ours 7.62 24.54 202.5 100
+ Synth 4.67 15.45 202.5 100

4.6. Few-shot Training

Due to the scarcity and the cost of producing large volumes of real an-

notated data, we provide an analysis on the performance of the proposed375

approach when dealing with a few-shot training setup, when compared again

with the sequence-to-sequence approach. To mimic a real scenario in which

only a small portion of real data is available, we randomly selected 20%, 40%,

60% and 80% of the IAM training set.
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Table 7: Fine-tuning with different portions of real data (line-level test set with greedy

decoding).

20% 40% 60% 80% 100%

CER WER CER WER CER WER CER WER CER WER

Seq2Seq 20.61 56.50 16.15 46.97 15.61 46.01 12.18 38.11 11.91 37.39
+ Synth 18.64 51.77 13.01 39.72 13.00 39.34 12.15 37.43 10.64 33.64

Ours 73.81 132.74 17.34 42.57 10.14 30.34 10.11 29.90 7.62 24.54
+ Synth 6.51 20.53 6.20 19.69 5.54 17.71 4.90 16.44 4.67 15.45

As shown in Table 7, both sequence-to-sequence and transformer-based380

approaches follow the same trend. The more real training data is avail-

able, the better the performance is. Overall, the transformer-based method

performs better than the sequence-to-sequence, except for the extreme case

of just having a 20% of real annotated training data available. The trans-

former approach, being a much larger model, struggles at such drastic data385

scarcity conditions. However, when considering the models that have been

pre-trained with synthetic data, the transformer-based approach excels in

few-shot setting conditions. We provide in Figure 4 some qualitative exam-

ples of the transcriptions provided by different models trained with reduced

training sets. All of the models were pre-trained with synthetic data.390

4.7. Language Modelling Abilities

We try to explore how would an external language model help the recog-

nition process and how good is the inherent language modelling ability as

shown in Table 8. Our baseline refers to our proposed method with training

from scratch. In order to propose a fairly comparable result, the text corpus395

of IAM training set is the only data to be seen by the baseline model. Learn-
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ing rate restart strategy [41] is applied to the baseline model, so that the

inherent language model could be properly trained. The external language

model is applied on two folds: first, a word-level unigram is trained on the

text corpus of either IAM training set or WikiText-103 [42] training set; then,400

a fine-grained character-level bigram/trigram is trained on IAM training set.

The word-level unigram is utilized to detect the error words and find the

top 10 candidate words by edit-distance, while the character-level bigram or

trigram is for ranking the candidate words by calculating the perplexity of

each word. From Table 8, the WikiText trained language model advances405

over the IAM trained one, because the large WikiText-103 dataset covers

more available words on the IAM test set. According to the WER, the two-

step language model strategy do improve the recognition performance when

training with a large text corpus. But the best CER is still achieved by our

baseline model. Due to the complexity of a Transformer architecture that410

involves the context information into different stages of multi-head attention

modules, it is difficult to evaluate the inherent language model ability. Thus,

according to Table 8, as the external language model does not improve the

recognition performance in a large margin, we would infer that the proposed

method does incorporate a language-specific contextual information within415

the language self-attention module.

During the evaluation process, we also try to decode with beam search [6],

and the comparison of both greedy decoding and beam search decoding with

a beam size of 4 is shown in Table 9. From this table, we observe that the

beam search strategy contribute quite little to the recognition performance.420

Considering the extra calculation cost, we adopt greedy decoding on all our
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Table 8: Effect of using a post-processing language model. Word-level unigram is trained

on the training set of IAM and WikiText-103, namely LM(IAM) and LM(WikiText),

correspondingly. Character-level bigram and trigram, trained on IAM training set, are

utilized to further rank and select the candidate words proposed by the word level unigram.

Method CER (%) WER (%) PPLword PPLchar

Our Baseline 7.97 19.61 − −

+LM(IAM) 14.70 26.01 453.62 −
+bigram 16.17 24.86 453.62 15.22
+trigram 15.31 24.70 453.62 20.12

+LM(WikiText) 9.24 17.27 10938.61 −
+bigram 8.66 15.49 10938.61 15.22
+trigram 8.59 15.39 10938.61 20.12

experiments.

Table 9: Comparison of the decoding strategies: greedy and beam search, where the beam

size is 4.

Method CER (%) WER (%)

Greedy decoding 7.97 19.61
Beam search decoding 7.95 19.60

4.8. Error Analysis

We have applied an error analysis for the impact of greedy decoding

as shown in Table 11. First, the text lines are split into 8 equally sized425

parts; then, three different probability analysis are computed. In the 1st

row Table 11, we have witnessed that there are normally more errors at the

beginning and the end. From the second row, it is clear that if there is

an error in Part0, then it would be very likely to occur an error in Part1.
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Table 10: Comparison with the State-Of-The-Art approaches on the test set of IAM line

level dataset. ”Ω” column represents the amount of lexicon that is utilized to train an

external language model, where ”−” means without applying external language modelling.

System Method Ω (k) CER (%) WER (%)

HMM/ANN
2008 - now

Almazán et al. [43] − 11.27 20.01
España et al. [8] − 9.80 22.40

Dreuw et al. [44] 50 12.40 32.90
Bertolami et al. [45] 20 − 32.83
Dreuw et al. [46] 50 10.30 29.20
Zamora et al. [47] 103 7.60 16.10
Pastor et al. [48] 103 7.50 19.00
España et al. [8] 5 6.90 15.50
Kozielski et al. [49] 50 5.10 13.30
Doetsch et al. [50] 50 4.70 12.20

RNN+CTC
2008 - now

Chen et al. [51] − 11.15 34.55
Pham et al. [52] − 10.80 35.10
Krishnanet al. [53] − 9.78 32.89
Wigington et al. [54] − 6.40 23.20
Puigcerver [11] − 5.80 18.40
Dutta et al. [55] − 5.70 17.82

Graves et al. [3] 20 18.20 25.90
Pham et al. [52] 50 5.10 13.60
Puigcerver [11] 50 4.40 12.20
Bluche et al. [40] 50 3.20 10.50

Seq2Seq
2016 - now

Chowdhury [15] − 8.10 16.70
Bluche [12] − 7.90 24.60

Bluche [12] 50 5.50 16.40

Transf. Ours − 4.67 15.45

Finally, the 3rd row indicates that the multiple errors tend to be grouped430

together. Thus, we could conclude that the errors early in the sequence do

not necessarily cause a tail of further errors. The recognizer has the ability
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to recover the text sequence from early errors with greedy decoding strategy.

Table 11: Error analysis for the impact of greedy decoding, where i ∈ {0, 1, ..., 7} corre-

sponds to the specific part of the text sequence.

Part0 Part1 Part2 Part3 Part4 Part5 Part6 Part7

P (erri) 0.24 0.19 0.22 0.21 0.22 0.22 0.24 0.26
P (erri|err0) − 1 0.35 0.32 0.32 0.33 0.32 0.35
P (erri..7|err0..i) − 0.83 0.8 0.75 0.7 0.61 0.51 0.34

4.9. Comparison with the State-Of-The-Art

Finally, we provide in Table 10 and extensive performance comparison435

with the state of the art. Different approaches have been grouped into a

taxonomy depending on whether they are based on HMMs or early neural

network architectures, whether they use recurrent neural networks (usually

different flavours of LSTMs) with a Connectionist Temporal Classification

(CTC) loss function, or if they are based on encoder-decoder sequence-to-440

sequence architectures. Within each group, we differentiate results depending

on whether applying an external language model or not. In the ”Ω” column,

”−” indicates that the method is an end-to-end recognizer without external

language modelling, while the exact number (”k” represents ”thousand”) is

the amount of lexicon that is utilized to train an external language model.445

Bluche et al. [40] achieves the best result among the methods with an external

language model, while our proposed method obtains the best result among

the methods without external language modelling, while still competing with

the state of the arts.
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5. Conclusion and Future Work450

In this paper, we have proposed a novel non-recurrent and open-vocabulary

method for handwritten text-line recognition. As far as we know, it is the first

approach that adopts the transformer networks for the HTR task. We have

performed a detailed analysis and evaluation on each module, demonstrating

the suitability of the proposed approach. Indeed, the presented results prove455

that our method not only achieves the state-of-the-art performance, but also

has the capability to deal with few-shot training scenarios, which further ex-

tends its applicability to real industrial use cases. Finally, since the proposed

approach is designed to work at character level, we are not constrained to

any closed-vocabulary setting, and transformers shine at combining visual460

and language-specific learned knowledge.

We will push forward two research lines for the future. On the one hand,

we will carry on further research on the integration of an external language

model. As the state-of-the-art language models are tremendously researched

in the field of natural language processing, we would like to stand on the465

shoulders of these modern studies and propose a better solution for the lan-

guage model integration. On the other hand, as the prosperous development

of Transformer-based methods, we are aware of many novel variations of

Transformer, such as Conformer [56], which adapt a Macaron-style block with

a convolution module and a pair of feed-forward modules to be surrounded.470

We think it is worth to study these advanced Transformer variations and fur-

ther apply them into our specific tasks for performance improvement, which

would be especially important for industrial use cases. Furthermore, As the

transformer based methods have heavy network architectures, they might
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advance on bigger and more complex tasks. So we would like to explore475

on real use cases with more authors and different languages, such as MAU-

RDOR [57]. Thus, we will further tune our model for the varied realistic

challenges.
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