
Efficient Segmentation-free Keyword Spotting

in Historical Document Collections
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Abstract

In this paper we present an efficient segmentation-free word spotting method, ap-
plied in the context of historical document collections, that follows the query-by-
example paradigm. We use a patch-based framework where local patches are de-
scribed by a bag-of-visual-words model powered by SIFT descriptors. By projecting
the patch descriptors to a topic space with the Latent Semantic Analysis technique
and compressing the descriptors with the Product Quantization method, we are
able to efficiently index the document information both in terms of memory and
time. The proposed method is evaluated using four different collections of histori-
cal documents achieving good performances both on handwritten and typewritten
scenarios. The yielded performances outperform the recent state-of-the-art keyword
spotting approaches.

Key words: Historical Documents, Keyword Spotting, Segmentation-free, Dense
SIFT Features, Latent Semantic Analysis, Product Quantization.

1 Introduction

Nowadays, in order to grant access to the contents of digital document collec-
tions, their texts are transcribed into electronic format so users can perform
textual searches. When dealing with large collections, automatic transcription
processes are used since a manual transcription is not a feasible solution. In
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the context of digital collections of historical documents, handwriting recogni-
tion strategies [1] are applied to achieve an automatic transcription since most
of those documents are manuscripts. However, handwriting recognition often
do not perform satisfactorily enough in the context of historical documents.
Documents presenting severe degradations or using ancient glyphs might dif-
ficult the task of recognizing individual characters, and the lexicon definition
and language modeling steps are not straightforwardly solved in such context.
Keyword spotting has become a crucial tool to provide accessibility to his-
torical collection’s contents. Keyword spotting can be defined as the pattern
recognition task aimed at locating and retrieving a particular keyword from a
document image collection without explicitly transcribing the whole corpus.

Two different families of keyword spotting methods can be found in the docu-
ment image analysis literature. On the one hand, learning-based methods such
as [2–4], use supervised machine learning techniques to train models of the
words the user wants to spot. Those models are then used to classify whether
an incoming document image contains or not one of the sought words. On the
other hand, example-based methods such as [5–7], receive as input an instance
of the keyword the user wants to retrieve from a previously indexed document
image collection. Learning-based methods are preferred for applications where
the keywords to spot are a priori known and fixed. If the training set is large
enough they are usually able to deal with multiple writers. However, the cost
of having a useful amount of annotated data available might be unbearable in
most scenarios. In that sense methods running with few or none training data
are preferred. It is the case of example-based methods, which are specially
interesting when it is not feasible to obtain labeled data. They also present
the advantage that the user is free to cast whatever query keyword he wants
and is not restricted to the set of modeled words.

However, one of the main drawbacks of keyword spotting methods, either
learning or example-based, is that they usually need a layout analysis step
that segments the document images into words [8–11] or text lines [4,6]. But
this segmentation step is not always straightforward and might be error prone.
In fact, although word and text line segmentation is a quite mature research
topic, it is far from being a solved problem in critical scenarios dealing with
handwritten text and highly degraded documents [12,13]. Any segmentation
errors affect the subsequent word representations and matching steps. This
dependence on a good word segmentation motivated the researchers of the
keyword spotting domain to recently move towards complete segmentation-
free methods. In [14,15], Leydier et al. proposed a word spotting methodology
based on local keypoints. For a given query image, interest points are extracted
and encoded by a simple descriptor based on gradient information. The word
spotting is then performed by trying to locate zones of the document images
with similar interest points. This retrieved zones are then filtered and only
the ones sharing the same spatial configuration than the query model are
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returned. A similar approach using SIFT keypoints for spotting both words
and graphical symbols in line drawings was presented in [16] by Rusiñol and
Lladós. However, directly matching local keypoints might be too computation-
ally expensive when dealing with large datasets, and thus researchers started
to apply the bag-of-visual words (BoVW) paradigm for keyword spotting pur-
poses. For instance, Roy et al. proposed in [17] to cluster local image features
into a codebook of representative character primitives for typewritten key-
word spotting. Another segmentation-free word spotting method is presented
in [18] by Gatos and Pratikakis. In that case, the authors propose to use a
sliding-window approach with a patch descriptor that encodes pixel densities.
The hypothetic locations where the queried word is likely to appear are found
by a template matching strategy. The method proposed by Almazán et al. [7]
presents another sliding-window approach where local patches are represented
by gradient-based descriptors and the retrieval step is performed by using an
exemplar support vector machine framework. In [19], Rothacker et al. com-
bined the use of a patch based BoVW representation with HMMs to efficiently
and accurately spot keywords in handwritten documents. Finally, the recent
work by Howe [20] presents a multi-writer keyword spotting method that mod-
els the possible stroke distortions by inferring a generative word appearance
model. The literature dealing with segmentation-free keyword spotting meth-
ods is rather scarce since it is a relatively new and unexplored research topic.
However, we strongly believe that bypassing the segmentation step is a must
in the context of historical document collections where achieving a perfect
word or text line segmentation is unfeasible. So, architectures that dismiss the
segmentation step present a clear asset in the context of historical documents.

In addition, quite often, keyword spotting methods rely on computing ex-
pensive distances exhaustively between the query and the words in the col-
lection such as DTW [5] or learning and applying complex models such as
HMMs [2,3,19] or neural networks [4]. In that sense, in large-scale scenarios,
the complexity issue should to be taken into account by proposing efficient
and scalable methods both in terms of memory usage and response time.

In this paper we present an efficient segmentation-free keyword spotting method
based on a BoVW model powered by SIFT descriptors in a patch-based frame-
work. Since an explicit word segmentation is avoided, the proposed method
can be applied in scenarios where word segmentation might be problematic
such as documents that do not follow a classical Manhattan layout, or even
be used to spot handwritten annotations that do not follow a regular text
line structure. Other preprocessing steps such as binarization, slant correc-
tion, etc. are also avoided, directly processing the raw image. The proposed
architecture follows the query-by-example paradigm and do not involve any
supervised learning method, thus do not rely on any previous content tran-
scription. Our proposal adapts techniques that have been successfully applied
in other computer vision problems to the historical documents context. By
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using such general representations instead of relying on hand-crafted features,
both handwritten and typewritten documents are handled indifferently.

This work is a significantly extended version of our previous conference pa-
per [21] that introduced our proposed methodology. Specifically, we have en-
hanced our preliminary version by including an indexation scheme aimed to
scale the proposed method to handle large datasets. A multi-length patch
representation is also introduced, which increases the retrieval performance
by taking into account the different possible lengths of the query words. A
thorough analysis and evaluation of all involved parameters of the method is
presented in order to assess the configuration maximizing the retrieval per-
formance. Finally, a performance comparison with the recent state-of-the-art
literature in keyword spotting is also presented.

The remainder of this paper is organized as follows. In Section 2, we present
how the document corpora are constructed and organized. We detail the fea-
ture extraction from document pages and the encoding system used in order to
efficiently query the collection. Section 3 details the retrieval stage. We show
how queries are treated and how regions of interest are determined within doc-
ument pages. Experimental results are presented in Section 4. We study the
influence of the method’s parameters and compare our performance against a
number of state-of-the-art keyword spotting approaches. Finally, conclusions
and further research lines are drawn in Section 5.

2 Off-line Corpus Representation

The word spotting problem is addressed by dividing the original document
images into a set of densely sampled local patches. These local patches are
the basic structure used to spot the words within the document: once a query
image is given, the local patches are used to determine the page locations where
the query keyword has a greater likelihood to appear. With such a procedure
having an explicit word segmentation is avoided as well as any other word pre-
processing steps (i.e. binarization, slant correction, etc.). These local patches
must roughly match the size of the text in the document. More precisely, the
height H of the local patches should roughly match the height of the text in
the document. This height parameter H can be either set automatically, by
for instance using a projection profile algorithm, or it can by manually set by
the user.

Then, for a given height H, four different widths W` are defined in order
to cope with queries of different lengths. Specifically, the geometry of the
patches has been set to H×H, 2H×H, 3H×H and 4H×H and are densely
sampled using a regular grid of H

3
× H

3
pixels. The most convenient patch
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width will be determined at query time. This setup guarantees that there is
enough overlapping between the local patches and the document words so that
each word in the document is covered by at least a patch. Although a salient
patch detection strategy will effectively reduce the amount of patches to be
processed [18], by densely sampling them no assumption has been made on
which portions of the documents are important to the final user.

2.1 Local Patch Descriptor

Local patches are described using the BoVW signature so that, first visual
words are extracted from the document images. The visual words are obtained
by densely sampling SIFT descriptors over the image by using the method
proposed by Fulkerson et al. in [22]. The SIFT descriptors are sampled over a
regular grid of 5× 5 pixels at three different scales: H

2
, 3H

4
and H. This multi-

scale representation is used to capture from fine to coarse characteristics from
the word characters. The finer scale characterizes sub-parts of a character
while the coarser scale characterizes whole characters and their surroundings.
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Fig. 1. Local patch descriptor signature: a) SIFT descriptors extracted from the
document image. b) SIFT descriptors encoded into visual words and c) visual word
accumulation in the local patch signature.

The performance of the BoVW model depends on the amount of visual words
extracted from the image. In the related literature it has been noted that the
larger is the amount of descriptors extracted from an image, the better the
performance is [23]. Therefore, a dense sampling strategy has a clear advan-
tage over approaches using interest points. However, a dense sampling over
the image results in some SIFT descriptors calculated in low textured areas
that are unreliable. In order to avoid this, descriptors having a low gradient
magnitude before normalization are directly discarded.

Once the SIFT descriptors are calculated, a codebook is used to quantize
them into visual words. The codebook is obtained by clustering the descriptor
feature space into K different clusters by using the k-means algorithm. Then,
visual words are obtained by simply assigning to each SIFT descriptor the
nearest codeword of the codebook.

After SIFT descriptors have been encoded into visual words, these visual words
are used to create the signatures of the local patches: a local patch pj of the
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document is described by a histogram fj =
[
f 1
j , f

2
j , ..., f

K
j

]
which accumulates

the frequencies of each visual word within the local patch. This K-dimensional
descriptors do not take into account the spatial distribution of the visual words
within the local patch. This is a drawback of the BoVW representation, since
words with the same letters but resorted altogether may have a very similar
signature. For instance, anagrams are completely indistinguishable using this
representation. Therefore, the Spatial Pyramid Matching (SPM) method pro-
posed by Lazebnik et al. in [24] is used in order to add spatial information to
the unstructured BoVW model. This method roughly takes into account the
distribution of the visual words over the local patches by creating a pyramid
of spatial bins.

Different spatial configurations have been evaluated and, a two level SPM with
a single vertical partition, differentiating the left and the right parts of the
patch, gives the best compromise between the retrieval performance and the
number of dimensions of the obtained descriptor. Since the amount of visual
words assigned to each bin is lower at higher levels of the pyramid, due to the
fact that the spatial bins are smaller, the visual words contribution is weighted
according to the spatial coverage. In our case, the visual words assigned to
the left and right spatial bins contribute twice to the final histogram. Finally,
a local patch is described by a 3×K dimensions descriptor fj =

[
fGj , f

L
j , f

R
j

]
,

where fGj , fLj , fRj are the patch descriptor sub-vectors corresponding to the
global, left and right spatial bins of the spatial pyramid. Finally, all the patch
descriptors from the corpus are re-weighted by applying the tf-idf model [25]
and normalized using the L2 norm. The tf-idf weighting strategy emphasizes
the visual words that are frequent in a particular local patch and infrequent
in the complete corpus. It assigns to each visual word f ij a weight in the local
patch pj given by tf-idff,p = tff,p×idff , where tff,p is the visual word frequency,
i.e. the number of occurrences of visual word f ij in local patch pj, and idff is
the inverse local patch frequency computed as

idff = log

(
M

dff

)
,

where M is the total number of local patches and the document frequency dff
corresponds to the number of local patches in the collection that contain the
visual word f ij . The different steps used to obtain the signatures of the local
patches are summarized in Figure 1.

2.2 Latent Semantic Analysis Transform

Ideally, two instances of the same character are always represented by the
same set of visual words. However, the clusters obtained using the k-means
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algorithm might not be optimal, so that some salient structures in the descrip-
tor space might not be properly represented. Since the number of visual words
of the codebook is not inferred from the descriptor space, this space may be
under- or over-clustered. Besides, the shape of a character is likely to change
from word to word in the context of keyword spotting, specially in handwrit-
ten documents. Therefore, the LSA technique introduced by Deerwester et al.
in [26] has been applied to represent the local patch descriptors in a way which
eludes unreliability, ambiguity and redundancy of individual visual words.

The LSA technique assumes that exists some underlying semantic structure
in the descriptor space. This semantic structure is defined by a set of abstract
topics where each topic is a representative distribution of visual words. The
topics are estimated in an unsupervised way using the singular value decom-
position (SVD) algorithm. Then, local patches are represented by a mixture
of topics instead of a histogram of visual words. The goal is to obtain a trans-
formed space where patches having similar topics but encoded by different
visual words will lie close. In the context of our problem where a document is
represented by millions of local patches, the LSA technique has the advantage
over similar alternatives that the SVD can be calculated incrementally [27].
This allows to obtain the transformation space matrix processing the whole
corpus of local patches in a very efficient way.

In order to obtain the space transformation matrix, the document patches of
the global level descriptors fGj are arranged in a visual-word-by-patch matrix
A ∈ RK×M , where K is the codebook size and M is the number of patches
of the document. The LSA obtains the transformed space by decomposing
the visual-words-by-patch matrix in three matrices by a truncated SVD. In
order to reduce the descriptor space to T topics, where T � K, we proceed
as follows:

A ' Â = UTST (VT )> ,

where UT ∈ RK×T , ST ∈ RT×T and VT ∈ RM×T . Then, a patch descriptor fj is

projected into the transformed space vector f̂j by applying the transformation
matrix XT = UT (ST )−1 to each spatial sub-vector fGj , fLj , fRj separately as
follows:

f̂j =
[
fGj
>
XT , f

L
j

>
XT , f

R
j

>
XT

]
.

This setup has obtained better experimental results than applying the LSA
technique directly to the local patch descriptor fj. By separately transform-
ing each sub-vector, the spatial information encoded by the SPM scheme is
maintained.
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2.3 Product Quantization Indexing

In order to efficiently store and retrieve the patch descriptors, an indexing
structure is needed. The PQ indexation framework proposed by Jégou et al.
in [28] has been used. This method allows both to reduce the amount of
memory needed to store the local patch descriptors by means of binary codes
and to reduce the computational cost of searching the nearest neighbors by
using a sub-linear approximate distance computation. The method is governed
by two parameters m and c that will determine the achieved compression
rates. The product quantizers decompose the local patch descriptor space into
a Cartesian product of m local sub-vectors. The original f̂j descriptors are
mapped into the T ∗ = 3T/m dimensional sub-vectors as

f̂j = [f̂ 1
j , ..., f̂

T ∗

j︸ ︷︷ ︸
u1(f̂j)

, ..., f̂
(m−1)T ∗+1
j , ..., f̂ 3T

j︸ ︷︷ ︸
um(f̂j)

]

=
[
u1(f̂j), ..., um(f̂j)

]
.

Then, each sub-space is quantized separately using c sub-quantizers. Finally,
the descriptors are represented by a short code composed of its sub-space
quantization indexes calculated as,

PQ(f̂j) =
[
κ1(u1(f̂j)), ..., κm(um(f̂j))

]
,

where κi(·) is the index of the sub-quantizer associated with the i-th sub-
vector. For instance, if in the LSA step, the number of topics is set to T = 512,
then the dimensionality of the patch descriptor is 3 × T = 1536 because of
the SPM scheme. Given a PQ configuration which divides the original space
into m = 128 sub-vectors of 12 dimensions and uses c = 256 sub-quantizers,
the 1536-dimensional local patch descriptor is effectively represented by a 128
bytes code.

3 Word Retrieval

To perform the retrieval, the query-by-example paradigm is followed, where the
user inputs the system a sample image of the sought word. In our segmentation
free approach, a set of putative patches which are visually similar to the given
query are first obtained. Then, a voting scheme aims at finding the locations
within the document pages with a high likelihood to find the query word.
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Fig. 2. Example of the voting procedure. a) Query, b) sample page, c) obtained
voting space.

3.1 Candidate Search

Given a query image which has been cropped by the user from the images in
the collection, the proposed method first densely samples the SIFT descriptors.
Then, quantizes them into visual words using the codebook. Afterwards, the
patch descriptor is obtained by accumulating the visual words into the different
bins of the spatial pyramid histograms. Subsequently, the obtained descriptor
is normalized using the tf-idf model obtaining fq which is projected into the
transformed LSA space by

f̂q =
[
fGq
>
XT , f

L
q

>
XT , f

R
q

>
XT

]
.

Finally, the cosine distance is computed between the query descriptor f̂q and

the document patch descriptors f̂j as a similarity measure to select the patches
from the documents where the query keyword is more likely to appear.

The cosine distance is calculated by using the asymmetric distance computa-
tion [28] method from the PQ framework. First, the dot product is separately
calculated for eachm sub-vector between the query and all the c sub-quantizers
obtaining a distance matrix D ∈ Rm×c, where the i-th row of the matrix is
computed as

di =
[
〈ui(f̂q), ui(f̂1)〉, ..., 〈ui(f̂q), ui(f̂c)〉

]
,

where 〈·, ·〉 is the dot product between the two sub-vectors. Then, following the
multi-length scheme, the query width determines which local patches agree in
terms of word length. According to that, just the most similar width W ∗

` to the
query is taken into account. Finally, combining the PQ codes [κ1, ..., κm] of the
selected local patches and the matrix D, the approximated cosine distances
are obtained

δqj = 1−
m∑
i=1

Di,κi(ui(f̂j))

between the query f̂q and the patch descriptors f̂j that match the query length.
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3.2 Candidate Localization

Once the most similar local patches have been retrieved, the regions of the
document which gather most support have to be found and selected as putative
retrieved locations.

For each document page image, a 2-D voting space is constructed in where
each retrieved local patch will cast its votes. In our implementation each cell
of the voting space has a geometry equal to the local patch sampling step
(H
3
×H

3
pixels). Then, each selected local patch casts a vote to the cell where its

geometric center falls, weighted by the approximate distance δqj. Afterwards,
the contribution at each cell of the voting space is smoothed by using an elliptic
Gaussian filter g⊥(x, y;W ∗

` , H). For instance, Figure 2 shows an example of
the smoothed voting space obtained for a given query. Finally, the candidate
locations are found by searching the local maxima (i.e. points having a greater
value than their 8-neighbors) in the smoothed voting space. The resulting
list of putative document regions RD is obtained by using a priority queue
which selects up to 10.000 locations having the higher associated scores. These
regions are centered at the highly ranked locations and have a geometry of
W ∗
` ×H pixels.

4 Experimental Results

Let us first introduce the datasets and the evaluation measures used to assess
the performance of the proposed system and then analyze the obtained results.

4.1 Dataset and Evaluation Measures

In order to perform the experiments, we have used three datasets of hand-
written documents and one dataset of typewritten documents. The first im-
age corpus (GW20 dataset) consists of a set of 20 pages from a collection
of letters by George Washington [5] dated 1755. Its ground-truth has a total
of 4860 segmented words with 1124 different transcriptions. In order to test
the scalability of the method, we have used a much larger set of images from
the George Washington letters 1 composed of 1.500 pages (GW1500 dataset),
however, there is no ground-truth for this dataset. The third evaluation corpus
(BCN dataset) contains 50 pages from a collection of handwritten marriage
licenses written in 1617 from the Barcelona Cathedral [29]. In that collection

1 Library of Congress http://memory.loc.gov/ammem/gwhtml/
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just some words are transcribed. We have 6735 segmented words corresponding
to 21 different transcriptions. Finally, although the main aim of our method is
to deal with handwritten documents, for the sake of generality, we also tested
a typewritten corpus (LB dataset) consisting of a set of 20 pages from a 1825
book on Lord Byron’s life [21]. In that case we have 4988 segmented words cor-
responding to 1569 different transcriptions. We can see an example of the four
datasets in Figure 3. In terms of the document degradation, the LB collection
is the most well-preserved and, since it is typewritten, it is expected to be
the less challenging dataset. Between the GW20 and the BCN collections, the
handwriting style in the GW20 images is less variable and the image quality is
quite good, whereas the BCN collection is the most challenging one since the
images present severe degradations and the variability in handwriting style is
highly noticeable.

a) b) c)

Fig. 3. Example of pages from the a) George Washington, b) Barcelona Cathedral
and c) Lord Byron’s collections.

In order to evaluate the performance of the spotting method we have chosen
to report the mean average precision mAP and recall measures. In our case,
a returned region from the documents will be considered as relevant when it
overlaps at least a 50% of the sought word in the ground-truth.

Table 1
Local patch and feature geometries parameters used at each database.

GW20 BCN LB

Line Height 80 70 60

Small 40 36 32

Feature Size Medium 60 56 48

Large 80 72 60

Patch Grid 27 × 27 24 × 24 20 × 20

Tiny 80 × 80 70 × 70 60 × 60

Patch Geometry Small 160 × 80 140 × 70 120 × 60

Medium 240 × 80 210 × 70 180 × 60

Large 320 × 80 280 × 70 240 × 60

For each database, we need to calculate the line height parameter H in order to
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define the geometry parameters of the local features and local patches. Table
1 summarizes the line height and the inferred feature and patch geometries
that we have used in the following experiments. Such line height H has been
automatically estimated by means of a projection profile analysis [12] over a
subset of pages of the document collection. The text line height is obtained
by calculating the median separation between peaks of the projection profile.
This allows to obtain an accurate H parameter despite the possible errors of
the line detection algorithm. Note that the H parameter has to roughly match
the text-line height but does not need to be extremely accurate to yield good
performances. Although different font sizes might be used in the documents
(e.g. GW20 collection), the proposed approach remains stable.

4.2 Results

In this section, we analyze the performance of the proposed system. We orga-
nize the different carried experiments as follows. First, we will present some
qualitative results to assess the effectiveness of the method to retrieve visu-
ally similar words. Then, we provide an exhaustive study of the effect of the
different parameter configurations of the proposed method. Subsequently, we
analyze the system’s behavior in a large-scale scenario. We finally compare
the obtained results with other state-of-the-art methods.

4.2.1 Qualitative Results

We present in Figure 4 some qualitative results for the four databases with
an SPM-BoVW patch descriptor with a codebook of 215 visual words. In a
word spotting application, the chosen word descriptor should agree with the
human perception when considering that two words are similar. We report here
some queries where the system yields some false positive words in the first ten
results. These results show that gradient-based descriptors fulfill the visual
requirements in both typewritten and handwritten scenarios since the false
positives (framed in red) are visually similar to the queried word. In addition,
it is worth to note that even if the method does not entail any segmentation
step, the retrieved regions are usually well centered over the text lines.

4.2.2 Baseline

We can see in Figure 5 the evolution of the mean average precision and recall
indicators for codebook sizes from 28 to 215 visual words and amount of topics
from 26 to 29 for the three collections. The system tends to perform better
with large codebooks both in terms of ranking and recall abilities. However,
we can appreciate an asymptotic behavior that will indicate that a sparser
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Query Results George Washington 20 pages

Barcelona Cathedral

Lord Byron

George Washington 1.500 pages

Fig. 4. 10 top-most retrieved images for some queries in the four evaluated collec-
tions.

patch representation, due to the use of too large codebooks, might hinder the
system’s performance. This fact is emphasized in the BCN collection, which
presents more noise. Here, when using medium-sized codebooks, the system
generalizes better and is able to absorb the noise whereas when we increase
the vocabulary size the patch descriptor becomes more noisy and the recall is
affected.

As expected, when using the LSA encoding, the greater the number of topics
is, the better the system performs. Looking at the GW20 and LB experiments,
the dimensionality reduction produces a small drop-off in terms of mean av-
erage precision for small codebooks that is counteracted as we increase the
codebook size. However, if we look at the experiments carried with the BCN
collection, an interesting phenomenon can be observed. Here, the drastic di-
mensionality reduction not only does not hinder the performance but provokes
a significant improvement in recall against the raw descriptors. This recall in-
crease can be attributed to the original idea of the LSA algorithm, which not
only reduces the dimensionality of the descriptors but also finds relationships
between different visual words corresponding to the same keyword. In noisy

13



64 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

Codebook size

m
A

P

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

64 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

Codebook size

m
A

P

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

64 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

Codebook size

m
A

P

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

a) b) c)

64 4096 8192 16384 32768
50

55

60

65

70

75

80

85

90

95

100

Codebook size

R
ec
al
l

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

64 4096 8192 16384 32768
50

55

60

65

70

75

80

85

90

95

100

Codebook size

R
ec
al
l

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

64 4096 8192 16384 32768
50

55

60

65

70

75

80

85

90

95

100

Codebook size

R
ec
al
l

64 Topics
128 Topics
256 Topics
512 Topics
Without LSA

d) e) f)

Fig. 5. Mean average precision and recall at different codebook sizes for the a) and
d) George Washington, b) and e) Barcelona Cathedral and c) and f) Lord Byron’s
collections.

environments the use of LSA results in a more compact representation that in
addition generalizes better and thus ameliorates the final performance.

The results of our baseline system with K = 215, T = 512 and using the SPM
scheme are summarized in the first row of the Table 3. The obtained results
clearly outperform our previous approach presented in [21] in both the GW20
and LB collections, mainly due to the increase in the codebook size and the
amount of topics in the LSA encoding.

4.2.3 Compressing with Product Quantization

Each patch from the documents in the baseline system is described by a
1536-dimensional double-valued feature vector, thus occupying 12.288 bytes
in memory. Each page having in average more than 10.000 patches, we need
approximately 120MB to store each page from the collection in memory. Since
managing such amount of data makes the system not scalable, we have com-
pressed the patch descriptors with the PQ method. We can see in Table 2
the details in terms of memory usage per patch and the compression ratios
reached for different values of the c and m parameters. We have achieved a
lossy patch representation that reduces its size with respect to the baseline by
a factor that ranges from 96 to 2048 times. This means that in a Gb of RAM
memory, we can fit between 900 to 18.000 pages.
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Table 2
Bytes and compression ratio per patch for each PQ setup.

c sub-quantizers m sub-vectors

8 16 32 64 128

64 6 (1:2048) 12 (1:1024) 24 (1:512) 48 (1:256) 96 (1:128)

128 7 (1:1755) 14 (1:877) 28 (1:438) 56 (1:219) 112 (1:109)

256 8 (1:1536) 16 (1:768) 32 (1:384) 64 (1:192) 128 (1:96)
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Fig. 6. Mean average precision and recall for different c and m values when using
PQ for the a) and d) George Washington, b) and d) Barcelona Cathedral and c)
and f) Lord Byron’s collections.

In Figure 6 we present the mAP and recall measures obtained after compress-
ing the patch descriptors with different values of the c and m parameters.
As we can appreciate, concerning the mAP, the increase of sub-vectors m en-
hances the performance of the system whereas no significant improvement is
observed when increasing the amount of sub-quantizers c. Regarding the re-
call indicator, we appreciate the same phenomenon, but in that case the recall
values even slightly outperform the baseline system.

These results can be attributed to the quantization step when local patch
descriptors are converted to PQ codes. This quantization reduces the discrim-
inative power of the local patch descriptors, resulting in a reduction of the
mAP. However, it also reduces the effects of noise, leading to the observed
moderate increase of the recall in all databases.
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Table 3
Performance of the proposed baseline method with PQ, multi-length configuration.

Collection

GW20 BCN LB

mAP (%) Recall(%) mAP (%) Recall(%) mAP (%) Recall(%)

Baseline (K = 215,T = 512) 57.51 91.22 90.17 74.64 85.16 96.48

With PQ (c = 256, m = 128) 54.68 91.88 88.07 77.07 80.61 96.71

With PQ and Multi-length 61.35 95.43 88.93 83.21 90.38 97.34

4.2.4 Using Mutli-length Patch Indexation

So far in the presented experiments the size of the query word has not been
taken into account. In our previous work [21], we found that short queries
performed worse than larger ones when using a fixed size of the patch. There-
fore, we have used a multi-length patch representation in order to fix this
shortcoming despite the increase in memory requirements. We can see in the
third row of Table 3 the important gain in both mAP and recall when the
patch indexation is adapted to the query width. By looking at the individual
performances attained at each patch geometry, we have observed that only
the tiny patch configuration performs slightly worse than the fixed length ap-
proach. All other scales outperform the fixed approach. For instance in the
GW20 dataset we obtained a 48.94%, 54.55%, 67.03% and 79.17% mAP for
the tiny, small, medium and large patch configurations respectively. While the
fixed approach reach a 54.68% mAP. A similar phenomenon is observed for
the recall value. The increase in performance as the patch geometry grows can
be explained due to the perceptual aliasing. Short queries are more likely to
obtain false positives since matching to a sub-strings is not penalized in our
method. Even though this behavior penalizes the performance of the method,
this is not an undesired conduct in the query-by-example setup.

4.2.5 Large scale evaluation

The vectorial representation of our spotting method allows to efficiently index
large collection of pages. Unfortunately, publicly available databases only have
tens of annotated pages since creating the ground-truth for large collections is
a tedious tasks. Therefore, in our large scale experiments using the GW1500
dataset, we had to calculate the retrieval score manually. Query images were
generated by randomly selecting 50 word images and the retrieval score was
obtained by manually annotating the correct matches for the 50 top-most
results. We have used up to 1.500 document images which required up to 60
million patches to represent the whole collection. Therefore, when using the
multi-length representation, the whole document collection needed about 7.5
Gb of memory with the best PQ configuration.
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Table 4
Performance of the system in the GW1500 scenario.

Num. of pages mAP (%) time (ms.)

100 57.73 3.01

500 56.83 2.85

1000 55.98 2.84

1500 55.69 2.87

The mAP and time needed to process a single page for different sized collec-
tions is shown in Table 4. As expected, the mAP score of the system slowly
decreases as more pages are indexed because of the amount of distractors and
false positive visually similar words also increases. Regarding the computa-
tional cost, the time required to process a page remains constant as more
pages are added. The PQ framework allows to retrieve approximate nearest
neighbors sub-linearly so that the candidate search time actually decreases
when adding more pages to the collection. However, the more pages we add to
the collection, the more the voting scheme from the candidate localization step
increases its computational cost. Leading to a nearly constant time as more
pages are added since both steps compensate each other. In addition, these
results do not take into account that pages can be processed independently.
Therefore, an straightforward modification to speed up retrieval speed is to
process document pages concurrently.

4.2.6 Comparison with related literature

The George Washington collection has been used in many word spotting works
and has become a de-facto dataset used to benchmark different systems. How-
ever, the lack of a standard evaluation protocol and the different taxonomies
of word spotting methods provokes that achieving a direct comparison among
methods is not straightforward. Not all the authors use the same set of pages,
query words and even evaluation measures. We present in Table 5 a review of
the achieved performances of several state-of-the-art methods. Only Almazan
et al. [7] used the same evaluation methodology than us. For the sake of com-
parison, we have evaluated our method using each of the different experimental
setups and evaluation measures proposed by the authors in the original pa-
pers. We can see that in equal conditions, the proposed method outperforms
all state-of-the-art but the method proposed by Frinken et al. in [4]. It is also
worth to mention that some segmentation-based methods present their results
by using a manual segmentation of the images avoiding thus the problems de-
rived from any erroneous segmentation artifacts. Lets now discuss the different
results obtained using the different configurations.

In some methods we have to take into account the reported recall measure. In
Rath and Manmatha [10] and Rothfeder et al. [9], they use a pruning step to
remove unlikely correspondences and also to speed up the retrieval process.
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Likewise, we revoked retrieved images with low score until a similar recall
value is attained. This pruning increases the mAP score as we can observe in
Table 5.

Other methods use a selected set of queries [11,6,14] avoiding stop words. Since
stop words have few characters and are difficult to distinguish visually, by
not considering them our method increased its mAP score. Similarly, methods
which use cross-validation only cast the query words appearing in all fold sets.
The configuration used by Rodriguez-Serrano and Perronnin in [2] divides the
database in 5 folds: a fold is used to create the queries, another fold is used for
validation purposes and the last 3 folds are used as test collection. Since the
GW dietaries explain facts temporally, some words just appearing in specific
page ranges are not considered using this configuration. However, stop words
are kept as queries, resulting in a mAP score decrease. However, the leave-one-
out configuration used in [8], just use a single page as test leading to drastic
reduction both in the number of queries and the possible retrieved results
facilitating a steep increase of the mAP.

Finally, Fischer et al. [3] and Frinken et al. [4] use cross-validation with an
evaluation framework performed at line level, i.e. a whole line is assessed as
relevant when it contains a single instance of the query word. In order to
compare their results with our method, we followed a procedure similar to
the one defined in both papers when comparing to DTW. The retrieved im-
ages are first projected to the closest text line. The score of a whole text line
corresponds to the highest score of the projected words. By following such
evaluation procedure, we obtain 100 line results for a given query, since each
page contains about 20 lines and only 5 pages are indexed per fold. Conse-
quently, the results obtained using this evaluation procedure have to be taken
cautiously when compared with word-level evaluations. When using this con-
figuration the mAP tends to increase since the effect of false-positives and
lowly ranked true-positives is lessened.

Still, Frinken et al. [4] outperforms our method. This is not surprising since
their method is learning-based. Besides using statistical machine learning mod-
els that cope with the handwritten word variations, these methods also in-
tegrate language models to further reduce the effects of visual ambiguities.
However, example-based system are more flexible as they can be used to spot
any kind of word or symbol present in the document image. For instance,
our system was also able to spot the graphical stamp of the Library of the
Congress as shown in the last row of Figure 4.

Finally, another important aspect when evaluating spotting systems is the
computational cost. From all the methods reviewed in Table 5, just Almazan
et al. [7] present an efficient implementation that can be scalable to large en-
vironmnents, requiring 15 ms. per indexed page. Approaches based on sliding-
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windows [4,6] are not scalable, since they have to process the whole document
corpus each time that a query is cast. Other holistic word signatures like [10,9]
require a complex alignment processes which can not be effectively indexed. By
contrast, the vector representation used by our method can naturally handle
larger amount of data by efficiently storing indexed information and obtaining
results in sub-linear complexity.

5 Conclusions

In this paper we have presented an efficient keyword spotting method for
historical collections that does not involve any segmentation stage. Thus the
proposed method presents a clear advantage over segmentation-based meth-
ods which are likely to fail in challenging scenarios.The proposed method
yields a very compact, efficient and discriminative representation thanks to
the LSA technique and the PQ compression step. Such representation is able
to efficiently index the document information both in terms of memory and
computational cost, resulting in a suitable method for large-scale scenarios.
By introducing a multi-length patch representation, we have increased the
retrieval performance when querying small words. In addition, we have pre-
sented a thorough analysis and evaluation of all the involved parameters of
the method in order to assess the configuration maximizing the retrieval per-
formance.

Finally, we have presented an exhaustive comparison with state-of-the-art
word-spotting methods. We evaluated our method using the experimental
setup of each compared method, concluding that our method outperforms
all them but Frinken et al. [4]. However, our example-based method is more
flexible since it does not rely on any segmentation method nor any image
pre-processing step and it does not take advantage of a language model, so
that, it is not limited to search words in the document but it can retrieve any
kind of symbol present in the images. This is a feature which can be useful for
historical documents where symbols used to abbreviate common words and il-
lustrations commonly appear. Nonetheless, adding either a language model or
some statistical machine learning steps to the proposed architecture is straight-
forward. For instance in [30], we added a model of the character distribution
over words in a query-by-string framework.
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[16] M. Rusiñol, J. Lladós, Word and symbol spotting using spatial organization of
local descriptors, in: Proc. of the of the Eighth IAPR Workshop on Document
Analysis Systems, 2008, pp. 489–496. doi:10.1109/DAS.2008.24.

[17] P. Roy, J. Ramel, N. Ragot, Word retrieval in historical document using
character-primitives, in: Proc. of the International Conference on Document
Analysis and Recognition, 2011, pp. 678–682. doi:10.1109/ICDAR.2011.142.

[18] B. Gatos, I. Pratikakis, Segmentation-free word spotting in historical printed
documents, in: Proc. of the International Conference on Document Analysis
and Recognition, 2009, pp. 271–275. doi:10.1109/ICDAR.2009.236.
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