
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Content and Style Aware Generation of Text-line
Images for Handwriting Recognition

Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés, Mauricio Villegas

Abstract—Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high
inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually
labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in
the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between
synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a
generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is
able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new
target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content.
Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance.
Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art.

Index Terms—Handwritten Text Recognition, Transformers, Generative Adversarial Networks, Synthetic Data Generation.

F

1 INTRODUCTION

DOCUMENT analysis and recognition is challenging be-
cause of the varied document types, ranging from

historical documents to modern administrative ones. In the
case of documents containing handwritten text, the inter-
and intra- writer variability of handwriting styles hinder
the recognition performance of Handwritten Text Recogni-
tion (HTR) methods. Since manually labeling lots of real
handwritten text images is labor-consuming, the utilization
of data augmentation and synthetic data generation using
TrueType fonts is a common practice to boost the HTR per-
formance [1]. However, the style bias between the synthetic
and real data hinders the improvement of the recognition
performance.

Since Generative Adversarial Networks (GANs) [2] were
firstly introduced in 2014, we have witnessed a remarkable
success in generating natural scene images, which are even
indiscernible from real ones by humans [3]. Conditional
Generative Adversarial Networks (cGANs) [4] were pro-
posed to condition the generation process with a class label.
Thus, controllable samples can be generated from different
given types [5]. However, these conditioned class labels
have to be predefined and hard-coded in the model before
the training process, so that it lacks the flexibility to generate
images from unseen classes at inference time.

• L. Kang is with Computer Science Dept., Shantou University, China.
E-mail: lkang@stu.edu.cn

• P. Riba is with Helsing AI, Munich, Germany.
E-mail: pau.riba@helsing.ai

• M. Rusiñol is with AllRead MLT, Barcelona, Spain.
E-mail: marcal@allread.ai

• A. Fornés is with Computer Vision Center, Computer Science Dept.,
Universitat Autonoma de Barcelona, Spain.
E-mails: afornes@cvc.uab.es

• M. Villegas is with omni:us, Berlin, Germany.
E-mail: mauricio@omnius.com

Manuscript received November 2, 2020; revised Jun 7, 2021.

Concerning the specific case of generating samples of
handwritten text, there are two different approaches to the
problem. Since handwritten text is a sequential signal in
nature, the same as natural language strings [6], sketch
drawings [7], [8], audio signals [9] or video streams [10],
it is natural that the first attempts at generating hand-
written data [11] were based on Recurrent Neural Net-
works (RNNs) [12]. Such approaches generate a sequence of
strokes in vectorial format that are used to render images.
On the contrary, some more recent approaches propose to
directly generate images instead of sequences of strokes. By
producing images directly, long-range dependency and gra-
dient vanishing problems of recurrencies are avoided, while
achieving a better efficiency. Furthermore, such approaches
are able to produce richer results in the sense that they go
beyond producing just nib locations, but also provide visual
appearance such as the calligraphic styles, such as slant,
glyph shapes, stroke width, darkness, character roundness,
ligatures, etc., and background paper features like texture,
opacity, show-through effects, etc.

Current state-of-the-art methods that directly generate
handwriting images work at different levels. First, some
approaches are focused on producing isolated characters
or ideograms [13], [14]. Such approaches often work over
a set of predefined classes, so that they can only generate
a reduced set of contents. Second, some approaches are
able to generate handwritten words [15], [16], allowing
not to be restricted to a closed vocabulary. Finally, some
works like [17], [18] go beyond isolated words and produce
full text-lines. The generation on text-line level is difficult
because not only the handwritten text should be readable
and realistic, but also the writing flow should be natural
and smooth.

Since we aim to boost the HTR performance at text-
line level, in this work we propose a method for gen-
erating handwritten text-line images. By conditioning on

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1: Examples of generated text-lines, each one using a different handwriting style. The text corresponds to the first
paragraph of the book “The Old Man and the Sea”.

both calligraphic style from handwritten images and textual
content from an external text corpus, our proposed method
is able to produce realistic, writer agnostic and readable
samples for handwritten text-lines (see Figure 1), which can
be effectively used in order to train and improve the final
HTR performance.

This work supposes a significantly extended version of
our previous conference paper [16]. In this work, we have
enhanced our previous generative architecture in order to
generate whole sentences rather than single words, where
Periodic Padding and Transformer-based Recognizer are
newly proposed. In addition, we propose a novel version
of the Fréchet Inception Distance (FID) metric to guide the
method to choose the best hyper-parameters specifically for
variable-length samples like handwritten text images. In the
training step, we make use of curriculum learning strategy
to help the proposed method to generalize from short text-
lines to longer ones. More importantly, and contrary to our
previous work (in which the only goal was to generate
realistic text images), the proposed method is particularly
focused on improving the HTR performance, demonstrating
that the use of realistic synthetic generated text at training
time is indeed useful for improving HTR.

To summarize, the main contributions of this paper are
the following:
• We propose a novel method for handwritten text-line

image generation conditioning on textual content and
visual appearance information, which is capable of
generating open vocabulary text and visual appearance.

• We introduce an improved version of the FID measure,
namely vFID, as a novel metric to evaluate the quality
of the generated handwritten image. It is more robust
to variable-length images and particularly suited for the
handwriting case.

• We conduct extensive experiments to demonstrate, on
the one hand, the realism of the generated handwritten
text images and, on the other hand, the boost in HTR
performance avoiding the manual labeling effort.

The rest of the paper is organized as follows. In Section 2 we
introduce the state-of-the-art approaches related to hand-
writing generation. In Section 3 we explain our proposed
method in details with different modules. In Section 4 the

proposed novel vFID metric is introduced. In Section 5
extensive qualitative and quantitative experiments are pre-
sented and discussed. Finally, Section 6 draws the conclu-
sions of this work.

2 RELATED WORK

Traditional methods [19], [20], [21], [22] approached the
generation of word samples by manually segmenting in-
dividual characters or glyphs and then tune a deformation
to match the target writing style. Recently, based on these
rendering methods, Haines et al. [23] succeeded in gener-
ating indistinguishable historical manuscripts of Sir Arthur
Conan Doyle, Abraham Lincoln and Frida Kahlo with new
textual contents, but these impressive results are obtained at
the cost of a high manual intervention.

Editing text in the natural scene images aims to replace a
word in the source image with a new one while maintaining
the original style. Wu et al. [24] proposed an end-to-end
trainable style retention network (SRNet) for the text editing
task, which is the first work to edit text image in the word-
level. Roy et al. [25] developed both Font Adaptive Neural
Network (FANnet) and Colornet architectures to modify
text in an natural scene image at character-level. Yang et
al. [26] also succeeded in manipulating the texts from the
natural scene images even with severe geometric distortion.
However, the texts in the natural scene images are often
to be typed fonts, especially in the datasets evaluated with
these methods. The lack of cursive styles of the scene texts
makes these approaches hard to work in handwriting sce-
narios.

The generation of sequential handwritten data consists
of producing stroke sequences in vector form with nib
locations and sometimes velocity records. With the coming
of deep learning era, Graves [11] utilized Long Short-Term
Memory (LSTM) to predict point by point at each time
step to generate stroke sequences conditioned on a given
writing style and a certain text string. Zhang et al. [27]
investigated RNN as both discriminative and generative
models for recognizing and drawing cursive handwritten
Chinese characters. Following this sequential-based idea,
some recent works [7], [8], [28], [29] have reached an im-
pressive performance on text or sketch generation. Online

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

handwritten data preserves rich dynamic information such
as trajectory, velocity and pressure, which is a big advantage
over the offline data. However, the offline data maintains
richer visual appearance information such as stroke thick-
ness, ink shading and paper textures. In this paper, we focus
on the problems on generating realistic handwritten images
at pixel-level, so we only make use of offline handwritten
data.

Different levels of offline handwritten data can be pro-
cessed: characters/glyphs, words and text-lines. Based on
the ideas of variational auto-encoders [30] or GANs [2],
some works achieve impressive performance on synthe-
sizing Chinese ideograms [14], [31], [32], [33], [34] and
glyphs [35]. However, these methods are restricted to a
predefined set of content classes and the input images have
fixed size. To overcome the limitation of incapability of
generating out of vocabulary (OOV) texts, Alonso et al. [15]
proposed a cGAN-based method to generate handwritten
word samples, which is conditioned on RNN-embedded
text information. However, this proposed approach suffers
from the mode collapse problem so that it learns the gen-
eral writing style of the training set and does not offer
variability of the generated samples. Our previous work,
GANwriting [16], works only at word level, so that it
cannot render long text strings into a handwritten image.
To keep the consistency in a text-line image, the extension
from word to text-line level is needed. Fogel et al. [17]
equip a style-promoting discriminator to be able to generate
diverse styles for handwritten image samples. However, the
generated characters have the same receptive field width,
which can make the generated samples look unrealistic.
Davis et al. [18] takes advantage of CTC activations [36] to
produce spaced text, which helps the generator to achieve
horizontal alignment with the input style image. The style
information is the concatenation of both global style feature
and character-wise style feature. However, the character-
wise style feature highly depends on the performance of
CTC, so mode collapse problem may happen when tackling
the unseen style images from the target dataset.

In summary, all the above described methods are not
robust enough to produce high quality handwritten samples
with a huge diversity in handwriting styles, especially when
producing longer text-lines. In Section 3, we describe our
generative method for handwritten text-line images with
carefully designed modules.

3 HANDWRITTEN TEXT-LINE SYNTHESIZER

3.1 Problem Formulation
Let {X ,Y,W} = {(xi, yi, wi)}Ni=1 be a multi-writer hand-
written text-line dataset, containing gray-scale text-line im-
ages X , their corresponding transcription strings Y and
their writer identifiersW . In this work, the handwriting cal-
ligraphic style is considered as an inherent feature for each
of the different writers, and we also hypothesize that the
background paper features are consistent within each writer.
Thus, the visual appearance is identified with wi ∈ W .
Therefore, let Xi = {xwi,j}Kj=1 ⊂ X be a subset of K
real text-line images with the same style defined by writer
wi ∈ W . Besides, A denotes the alphabet containing all the
supported characters such as lower and upper case letters,

digits and punctuation signs that the generator will be able
to produce.

In this setting, the realistic handwritten text-line gener-
ation problem is formulated in terms of few-shot learning.
Two inputs are given to the model: 1) a set of images Xi as
a support example of the visual appearance attributes of a
particular writer wi; and 2) a textual content provided by
any text string t where tn ∈ A. The proposed conditioned
handwritten text generation model is able to combine both
sources of information in order to yield realistic handwrit-
ten text-line images, which share the visual appearance
attributes of writer wi and the textual content provided by
the string t. Finally, our objective model H , able to generate
handwritten text, is formally defined as

x̄ = H (t,Xi) = H (t, {x1, . . . , xK}) , (1)

where x̄ is the artificially generated handwritten text-line
image with the desired properties. From now on, we denote
X̄ as the output distribution of the generative network H .

Figure 2 shows a detailed overview of the proposed
architecture. The proposed model consists of four main
components: the Visual Appearance Encoder, the Textual
Content Encoder, the Generator and the learning objectives.
On the one hand, the generator, which is conditioned by
a combination of visual appearance attributes and textual
content information, is able to produce human-readable
handwritten text-line images. On the other hand, three
learning objectives are proposed to guide the learning pro-
cess towards generating realistic images, which are classi-
fied within a particular visual appearance while sharing the
specified textual content.

3.2 Visual Appearance Encoder
The visual appearance encoder receives as input a given
set Xi of handwritten text line images from a particular
writer wi. We assume that these given images share some
visual appearance features that are inherent to each writer.
These visual appearance attributes consist of properties such
as slant, glyph shapes, stroke width, character roundness,
ligatures, etc. In our proposed approach, the visual ap-
pearance encoder aims at extracting the handwriting style
attributes from the set of images Xi. With this aim, the
textual content information from those images is ignored
and totally disentangled from the stylistic visual attributes.

The proposed visual appearance encoder consists of two
modules: first, a periodic padding module which ensures
that all the images share the same size and, second, a style
blending module in charge of extracting the visual appear-
ance features. In general, the visual appearance encoding
process is denoted as Fs = S (Xi).

3.2.1 Periodic Padding Module
As the style image samples Xi have varied shapes, they are
firstly resized to the same 64 pixels height while keeping
the aspect ratio. Let L be the maximum length of both input
and output images. To mimic the background color with
our padding, the input image xj ∈ Xi is first normalized
within the range [0, 1] and then their intensities are inverted
1 − I/255. Thus, the writing strokes have values close to 1
whereas the background has values close to 0. In the HTR

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2: Architecture of the proposed handwriting synthesis model. It consists of a Visual Appearance Encoder (cyan box), a
Textual Content Encoder (red box), a Generator (magenta box) and learning objectives (blue box). Xi and t are the images
and text string input, respectively. The x̄ is the generated sample that shares the visual appearance with Xi and contains
the textual information with t.

literature, the usual technique to align all the images to
have the same length in a mini-batch is to add 0-padding to
the right of each image until reaching the maximum length
L. We have experimentally observed that 0-padding has a
severe impact on the handwritten text-line image generation
process, which can easily collapse in terms of style in the
padded regions. This is especially important when there
is a huge difference in the length of input images. The
style representations Fs contain not only the visual appear-
ance attributes, but also the spatial information. Thus, the
padding would make longer texts to loose the handwritten
style consistency in the generated output. To overcome this
problem, we introduce a simple periodic padding module,
which consists in repeating the input image several times
to the right until the length fits the maximum width L. An
example is shown in Figure 3. Thus, the periodic padding
can deal with the visual appearance vanishing problem,
which is especially useful to generate long text handwritten
samples with short input images. Bear in mind that the style
images Xi are only used to extract style features, which
are completely independent from the textual content in the
image.

3.2.2 Style Blending Module
The K images from Xi, now all having the same size
are channel-wise concatenated and given as input for the
subsequent stylistic feature extractor. The style blending

module is a sequence of convolutional layers. It is in charge
of producing the visual appearance features Fs from the
set of images Xi, which is represented as a 64 × L × K
input tensor. The choice of the convolutional architecture is
detailed in Section 5.

3.3 Textual Content Encoder

The textual content encoding process transits an input text
string t into textual content features Fc and F ′c, as shown
in Figure 4, and denoted as Fc, F

′
c = C (t). Observe that

the input text string t is firstly padded with the empty
symbol ε to a fixed maximum string length T . Then, it
goes through two pipelines: the character-wise embedding
produces character-wise features Fc, and the global string
encoding produces a global string description F ′c. These two
pipelines have the textual content information that will be
later combined with the visual appearance features during
the generating process.

3.3.1 Embedding Module

As our method aims to generate any input sentence, includ-
ing OOV words created from the predefined characters of
alphabet A, an embedding layer is applied on the input text
string to extract character-level embedding features. Thus,
each character ti ∈ t is mapped into a vector of size n by
means of the embedding function:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3: Periodic padding example. Given a real image, periodic padding to the right is applied several times until the
maximum image width L is reached.

Fig. 4: Architecture of the textual content encoder. It consists of an Embedding Module (red box), a Character-wise
Encoding (orange box) and a Global String Encoding (yellow box). In the sequence of character embeddings, each vector
is represented by a specific color.

Embed: A → Rn

ti 7→ Embed(ti),

For the sake of simplicity and with abuse of notation, we
will denote Embed(t) as the embedding of the whole string
applied character by character.

3.3.2 Character-wise Encoding
In order to properly combine the textual information with
the style feature Fs in the next step, the length T should
be aligned with the width of Fs. To achieve the align-
ment, each character embedding is repeated several times
separately, and then all the chunks of repeated character
embeddings are concatenated back together horizontally. To
directly concatenate textual content feature Fc and visual
appearance feature Fs in the next step, we also duplicate the
horizontal character embeddings vertically. So the textual
content feature Fc ends up with the shape of (64, L, K)
as shown in the upper part of Figure 4 and denoted as
g1. Thus, we obtain the textual content feature Fc, which
represents the local textual information and is obtained as
Fc = g1(Embed(t)). Then both the content feature Fc and
the style feature Fs are concatenated channel-wise.

3.3.3 Global String Encoding

Apart from injecting the character-wise information, an
overall string information is helpful to guide the generating
process as it gives a global coherence to the generation
process. The character embedding Embed(t) is reshaped
into a large one-dimensional vector of size T · n. Then,
a Multi-Layer Perceptron (MLP) g2 is used to produce
the global textual feature F ′c, as shown in the lower part
of Figure 4. Thus, the global features are computed as
F ′c = g2(Embed(t)), which is a one-dimensional vector. We
first split it into 8 equally sized pieces, and then we use them
as 4 pairs of α and β parameters orderly, which will be used
in AdaIN (refer to Equation 2).

3.4 Generator

The generatorG is in charge of combining the two sources of
information: the visual appearance encoder and the textual
content encoder. It consists of two residual blocks with
AdaIN [37] as the normalization layer, 4 convolutional
modules with nearest neighbor up-sampling and ReLU acti-
vations, and a final tanh(·) activation layer. The global string

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

information is equipped with the generator via AdaIN,
which is formally defined as

AdaIN (z, α, β) = α

(
z − µ (z)

σ (z)

)
+ β, (2)

where z ∈ F , µ and σ are the channel-wise mean and
standard deviations. The parameters α and β are assigned
with the splitting of F

′

c . Hence, the generative process is
defined as

x̄ = H (t,Xi) = G (C (t) , S (Xi)) = G (Fc, F
′
c, Fs)

= G (g1 (Embed(t)) , g2 (Embed(t)) , S (Xi)) ,
(3)

where C is the textual content encoder and S is the visual
appearance encoder.

3.5 Learning Objectives
Three learning objectives are proposed to enforce different
properties on the generated images x̄ ∈ X̄ , where X̄ is the
generated image space mimicking the visual appearance of
real images X . First, a discriminative loss Ld is in charge
to ensure a realistic global appearance. Second, a writer
classification loss Lw forces the generated samples to follow
a specific appearance style. Finally a recognition loss Lr

ensures the preservation of the textual content.

3.5.1 Discriminative Loss
Following the traditional GAN paradigm [2], we propose
a discriminative model D, which consists of one con-
volutional layer, six residual blocks, each of them with
LeakyReLU activations and average poolings, and a final
binary classification layer. Thus, given an input image, D
produces a binary output that is classified either as real (1)
or fake (0). It does not take into consideration neither the
visual appearance provided by Xi nor the textual contents
provided by t, and only focuses on the general visual
appearance of the generated image x̄ to look realistic. The
discriminative loss Ld is formally defined as

Ld (H,D) = Ex∼X [log (D (x))] + Ex̄∼X̄ [log (1−D (x̄))] .
(4)

3.5.2 Visual Appearance Loss
Assuming that each writer has an inherent writing style,
we propose a writer classifier W that follows the same
architecture of D by replacing the final binary classification
layer with an N -classification layer, where N is the number
of writers in the training dataset. The writer classifier W is
optimized with real samples drawn fromX . This loss guides
the generation of synthetic samples to align their styles with
the given writer. Thus, the writer classifier acts as a style loss
to provide diversity on the generated samples. The style loss
Lw is formally defined as

Lw (H,W) = −Ex∼{X ,X̄}

|W|∑
i=1

wi log (ŵi)

 , (5)

where ŵ = W (x) is the predicted probability distribution
over writers in W and wi is the real writer distribution.
Therefore, the generated samples should be classified as the
same writer wi used to construct the input style condition-
ing image set Xi.

3.5.3 Content Loss
A handwritten text recognizer R is used to ensure that the
generated sample has the specific textual content, indicated
by the input string t. Given that we generate text-lines, a
robust recognizer for long sequences is needed. We adopt a
Transformer-based recognizer [38] that has recently shown
good performance on full handwritten text-lines.

The architecture of our Transformer-based HTR ap-
proach is shown in Figure 5. It also follows the encoder
(upper part) and decoder (lower part) structure as proposed
in [39]. The encoder extracts high-level features from the
input handwritten images, which consists of a ResNet and
4 blocks of self-attention module and linear module with
layer normalization and dropout. The decoder takes masked
text strings as input [39] so that the decoding only depends
on predictions produced prior to the current character. In
addition, the processing with characters is done in parallel,
avoiding the recurrency of sequence-to-sequence models.
Such a parallel processing of what used to be different
time steps in sequence-to-sequence approaches drastically
reduces the training time. The decoder consists of 4 blocks
of self-attention modules and 4 blocks of mutual-attention
modules, which provide an even more powerful ability to
handle long sequence inputs than sequence-to-sequence ap-
proaches. The comparison between both of the sequence-to-
sequence-based and Transformer-based methods is detailed
in Section 5.

The Kullback-Leibler divergence loss is used as the
recognition loss at each time step. It is formally defined as:

Lr (H,R) = −Ex∼{X ,X̄}

 L∑
i=0

|A|∑
j=0

ti,j log

(
ti,j

t̂i,j

) , (6)

where t̂ = R(x); t̂i being the i-th decoded character
probability distribution by the recognizer, t̂i,j being the
probability of j-th symbol in A for t̂i, and ti,j being the
real probability corresponding to t̂i,j . The empty symbol ε
is ignored in the loss computation.

3.5.4 Joint Training Process
The whole architecture is trained with the three proposed
loss functions jointly in an end-to-end fashion as follows.

L(H,D,W,R) = Ld(H,D) + Lw(H,W) + Lr(H,R), (7)

min
H,W,R

max
D
L(H,D,W,R). (8)

The training strategy is further explained in Algorithm 1,
where Θ = {ΘH ,ΘD,ΘW ,ΘR} represents the related net-
work parameters and Γ(·) denotes the optimizer function.
Even though the training process is end-to-end, the opti-
mization process is performed in two steps. Firstly, we feed
both real and generated samples together to the discrim-
inator D, so that the discriminative loss can be obtained
(line 3). Secondly, we only make use of real data to train
the writer classifier W and the text recognizer R, so that the
visual appearance and content losses are obtained (line 4).
As W and R are optimized with only real data, they could
be pre-trained independently as an initialization apart from
the generative network H . However, the good performance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

ResNet
Multi-Head

Visual
Self-Attention Li

n
e
a
r

x4

Layer Norm Dropout

Multi-Head
Language

Self-Attention Li
n
e
a
r

x4

Multi-Head
Mutual

Attention Li
n
e
a
r

x4

S
o
ft

m
a
x

Fig. 5: Architecture of the Transformer-based handwritten text recognizer. The upper part is the Encoder (blue color) and
the lower part is the Decoder (green color).

Algorithm 1 Training algorithm for the proposed model.
Input: Input data {X ,Y,W}; alphabet A; max training

iterations Itr
Output: Networks parameters Θ = {ΘH ,ΘD,ΘW ,ΘR}.

1: repeat
2: Get style and content mini-batches {Xi, wi}NBatch

i=1 and
{ti}NBatch

i=1

3: Ld ← Eq. 4 . Real and generated samples x ∼ {X , X̄ }
4: Lw,r ← Eq. 5 + Eq. 6 . Real samples x ∼ X
5: ΘD ← ΘD + Γ(∇ΘDLd)
6: ΘW,R ← ΘW,R − Γ(∇ΘW,RLw,d)
7: L ← Eq. 7 . Generated samples x ∼ X̄
8: ΘH ← ΘH − Γ(∇ΘHL)
9: until Max training iterations Itr

of W and R may unbalance the three losses in the early
training steps, which could make the whole network hard
to train. Thus, we initialize all the network parameters
from scratch and jointly train them altogether. The network
parameters ΘD are optimized by gradient ascent following
the GAN paradigm whereas the parameters ΘW and ΘR are
optimized by gradient descent. Finally, the overall generator
loss is computed following Equation 7 where only the
generator parameters ΘH are optimized (line 8).

4 VARIABLE-LENGTH FRÉCHET INCEPTION DIS-
TANCE (VFID)
In order to evaluate the quality of the generated images by
GANs, there is a commonly used metric, namely Fréchet
Inception Distance (FID) [40]. FID is used to evaluate the
similarity between the generated images and the real ones.
This is achieved by calculating the distance between two
feature vectors, which are obtained from two image sets,
the generated images and the real ones, respectively. FID
has been widely used in evaluating the performance of
GANs at image generation. This metric follows two steps:
first, it extracts features from an InceptionV3 network [41]

while keeping activations of the last pooling layer, which is
pretrained on the ImageNet dataset [42]; then, it calculates
the distance between the feature vectors. Even though FID
has been widely used for the evaluation of the generated
natural scene images, it is not well suited for handwritten
image data. The main drawbacks in such case are (i) the
ImageNet dataset consists of natural scene image samples
that have very few common features with handwritten
text images; (ii) the InceptionV3 model used by the FID
requires a fixed size input, which could not handle the
variable-length scenario of handwritten text images. Thus,
we introduce a novel version of FID, namely vFID (Variable-
length Fréchet Inception Distance), specially suited for such
variable-length images such as handwritten text images.
Similarly to the original FID, the proposed metric vFID
share the same InceptionV3 network as the convolutional
backbone. However, instead of the average pooling used by
the FID, we first reshape the convolutional feature into a 2-
dimensional feature map which is then fed into a Temporal
Pyramid Pooling (TPP) layer [43] as shown in Figure 6.
TPP is especially useful when the input is a variable-length
sequence of features, which is the case for handwritten text-
line images. Based on the pretrained InceptionV3, we fine-
tune the vFID model with the IAM dataset by fitting a
writer classifier. When applying the vFID metric, the input
images should be resized to have 64 pixels height while
preserving the aspect ratio. Thus, the variable resulting
width is denoted by L. We calculate the vFID values for
each input image without adding paddings. Thus, vFID is
not affected by batching and different image widths.

To achieve a valid metric performance and a fair compar-
ison for both vFID and FID, we first reuse the Inception V3
network that is pretrained on ImageNet dataset, and then,
we fine-tune both vFID and FID models on the IAM datasets
towards a writer classification problem. Once they are prop-
erly trained, we can then evaluate the generated image
quality through the metrics. The performance comparison
of FID and vFID for the IAM dataset is shown in Figure 7.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a)

(b)

Fig. 6: (a) Inception module of FID with Average Pooling, (b)
Updated Inception module of vFID with Temporal Pyramid
Pooling.

The blue distribution indicates the performance for the same
writer, while the red one indicates the performance for a
different writer pair. The lower value of the FID/vFID, the
better similarity is obtained. Therefore, we aim to achieve
a robust metric that produces a lower value for the same
writer (blue) and a higher value for the different writers
(red). In Figure 7(a), we observe that the performance of FID
do not have a good behaviour since it has a big overlapping
area, so that it cannot provide a reasonable judgement on the
performance of the generated text. Contrary, our proposed
vFID in Figure 7(b) could provide a more trustful measure.

(a) (b)

Fig. 7: Histogram of FID (a) and vFID (b). The x-axis in-
dicates the FID/vFID values, and the y-axis indicates the
counts. The FID/vFID between subsets of samples in the
same writer is shown in blue, and between different writers
in red. The distribution of blue and red should be apart as
far as possible. Both histograms are normalized to sum up
to one.

5 EXPERIMENTS

In this section, we present the extensive evaluation of our
proposed approach. First, we perform several ablation stud-
ies on the key modules to find the best balance between per-
formance and efficiency. Then, we demonstrate qualitative
and quantitative results on synthetically generated images.
Finally, we make use of the generated samples to boost the
HTR performance in different experimental settings.

5.1 Datasets and Metrics
The IAM offline dataset [44], the Rimes dataset [45] and
the Spanish Numbers dataset [46] are utilized in our ex-
periments as shown in Table 1. However, our proposed

(a)

(b)

(c)

Fig. 8: Examples of the IAM, Rimes and Spanish Numbers
datasets are shown in (a), (b) and (c), respectively.

generative method is only trained with IAM dataset. All
the three datasets are utilized in the HTR experiments.
Examples of the three datasets are shown in Figure 8.

TABLE 1: Overview of the datasets used in our HTR exper-
iments: Number of text-lines used for training, validation
and test sets, and number of writers.

Dataset Train Val. Test Writers Language

IAM [44] 6482 976 2914 657 English
Rimes [45] 11333 − 778 1300 French
Spanish Num. [46] 298 − 187 30 Spanish

WikiText-103 [47] is chosen to be our external text corpus
when selecting random text strings as textual input. As in
the case of images, we select texts in WikiText-103 from one
word to Nt words to create sentences. We end up with 3.6
million text-lines with number of characters varying from 1
to 88.

The Character Error Rate (CER) and the Word Error Rate
(WER) [48] are the performance measures. The CER is
computed as the Levenshtein distance, which is the sum of
the character substitutions (Sc), insertions (Ic) and deletions
(Dc) that are needed to transform one string into the other,
divided by the total number of characters in the groundtruth
(Nc). Formally,

CER =
Sc + Ic +Dc

Nc
(9)

Similarly, the WER is computed as the sum of the word
substitutions (Sw), insertions (Iw) and deletions (Dw) that
are required to transform one string into the other, divided
by the total number of words in the groundtruth (Nw).
Formally,

WER =
Sw + Iw +Dw

Nw
(10)

5.2 Curriculum Learning Strategy

The IAM dataset is used to train our generative method.
It is a multi-writer dataset in English, which consists of
1, 539 scanned pages written by 657 writers, as detailed
in Table 1. Since we can access to the groundtruth of the
training data, including the bounding-boxes at word level,
we could enlarge the training set using the N-gram cropping
strategy. For example, given a sequence of words, we can

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2: Three categories of the IAM offline dataset, from
short to long text-lines.

Category Num. of chars. Image length

1 1− 24 64− 600
2 24− 48 600− 1200
3 48− 88 1200− 2160

iteratively crop out one-word, two-words, and so on until
N -word sub-lines, where N is the maximum number of
words in the given text-line. Thus, given the normalized
height of 64 pixels, we end up with 598, 489 images with
variable lengths from 64 to 2160 pixels and the number of
characters from 1 to 88, where 2160 and 88 are the maximum
image length and text length for IAM dataset, respectively.

To achieve a better handwriting generation with fine-
grained details, we make use of curriculum learning strat-
egy by splitting training data into 3 categories as shown
in Table 2, from shorter to longer sentences. We start the
training with data of Category 1 from scratch, then we
fine-tune with data of Category 2, and finally we fine-tune
with data of Category 3. The training is done step by step
with increasing difficulty in the sense of image and text
length. Note that the data used in the previous training step
does not appear in the next fine-tuning step considering the
training speed. In practice, the second and third steps just
need to be fine-tuned for few epochs.

5.3 Implementation Details

The experiments were run using PyTorch [49] on a single
NVIDIA RTX6000 GPU. As there are three objective mod-
ules, we set the learning rate of the discriminator and the
generator to be 1 ·10−4, whereas the ones of writer classifier
and recognizer are 1·10−5. The training process is optimized
with Adam optimizer and a batch size of 4.

5.4 Ablation Study

As explained in Section 4, the vFID can measure the sim-
ilarity of both real and generated images in a better way
than the original FID, so we make use of vFID to choose the
convolutional architecture and the recognizer.

First, we compare the generated samples with and with-
out Periodic Padding Module as shown in Figure 9. The
style input is randomly selected from a specific writer, and
it may be a shorter image than what we expect to generate.
In the upper part of Figure 9, the style input is padded
with 0 to the maximum width, so that the generated image
suffers from the style collapse problem in the corresponding
padded area. Contrary, in the lower part of Figure 9, with
the periodic padding process, the style image has been
extended to the maximum width that is sure of covering
all the possibly generated area. Thus, the generated sample
keeps the consistency in the visual appearance from the first
character until the end.

Second, we modify the convolutional layers from VGG19
to ResNet34, and study the performance and training speed.
The performance is evaluated on the generated samples
based on the style information from IAM test set and content
information from a subset of WikiText-103. The models

are trained until 500 epochs. Speed is the total time for a
forward and backward pass. From Table 3, we observe that
ResNet34 achieves a higher training speed while obtaining
a slightly better performance.

TABLE 3: Ablation study for Convolutional layers on the
IAM test set.

Conv. vFID Speed (ms)

VGG19 115.46 144.13
ResNet34 114.39 136.80

TABLE 4: vFID performance on generating different length
of images for the sequence-to-sequence and Transformer-
based HTR methods. The lower the value, the better the
performance.

Method Num. of chars to be generated
1-10 (words) 1-90 (lines)

Seq2Seq 136.51 249.94
Transformer 146.74 114.39

Third, we analyze the effect of replacing the sequence-to-
sequence recognizer with the Transformer-based recognizer.
Based on the number of characters to be rendered in the
generated samples, we have two categories: words with 1 up
to 10 characters and text-lines with 1 up to 90 characters, as
shown in Table 4. From the Table we observe that sequence-
to-sequence-based method performs well at word level but
it significantly degrades when extending to text-lines. Con-
trary, the Transformer-based HTR method achieves a better
performance when dealing with longer text sequences. Since
the transformer network has the ability of dealing with long-
term dependencies, it becomes more powerful to control the
textual content of the generated samples.

Finally, we analyze the two schemes, either character-
wise encoding (g1) or global string encoding (g2), to merge
with the visual appearance feature as condition for the gen-
eration process. As shown in Table 5, the best performance
is achieved with the use of both local and global encodings.
Thus, the two schemes are utilized altogether in our model.

TABLE 5: Ablation study on the use of character-wise en-
coding (local feature) and global string encoding (global
feature). vFID values are calculated on the IAM at word-
level (1-10 characters).

Local (g1) Global (g2) vFID

X 162.38
X 149.07

X X 146.74

5.5 Latent Space Interpolation

Once the system is trained, the generator G has learned a
map in the handwriting style latent space. Each writer cor-
responds to a point in this latent space and different writers
are connected in a continuous way. Thus, we can explore
it by randomly choosing two writers and try to traverse
between the corresponded two points in the style latent

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Style (w/o)

Output

Style (w/)

Output

Fig. 9: Comparison of the generated results for the same text string “art in the ownership of both the state and the
municipality of” without (upper) and with (lower) the periodic padding process.

Style A:

0.0:
0.1:
0.2:
0.3:
0.4:
0.5:
0.6:
0.7:
0.8:
0.9:
1.0:

Style B:

Fig. 10: Example of interpolations in the style latent space.

space as shown in Figures 10 and 11. The first and last rows
show the real samples from writer A and B, respectively.
The samples in between are synthetically generated ones
that try to traverse from writer A to B. The rendered text
is the quote of “our virtues and our failings are inseparable,
like force and matter” from Nikola Tesla, which has not been
seen during training.

5.6 Handwritten Text-line Generation

For the qualitative experiments, we show the results in two
cases. First, given a same writing style, we try to generate
samples with different text strings. Second, given a specific
text string, we try to generate samples in different writing
styles. The first case is shown in Figure 12. The text string is
the quote of “the progressive development of man is vitally
dependent on invention.” from Nikola Tesla. We translate
it into German, French and Spanish while replacing special
characters with the corresponding letters (e.g. “é” to “e”). In
Figure 12, the first row is a sample of the style input, and
the following rows are (text string, synthetically generated
sample) pairs. By showing the generation on different lan-
guages, our method proves to be not restricted to a training
corpus nor a language model. Thus, this method can be
applied to generate any OOV words and sentences. The
second case is shown in Figure 13. The first row is the

text string input, and the following rows are (handwriting
style sample, synthetically generated sample) pairs. From
the results we observe that our method has the ability to
generate text-line samples with diverse writing styles.

Furthermore, we show a comparative with the state-of-
the-art methods on handwritten text generation in Table 6.
In our previous work [16], we have conducted a human
evaluation study to show that the generated samples are
indistinguishable by humans. However, in this paper we
focus on the improvement of HTR performance, so the
interested reader is referred to our previous publication for
details on the human evaluation study.

5.7 HTR Performance Improvement

As discussed before, our method has achieved good perfor-
mance on generating realistic handwritten text-line images
with varied styles. These generated data could indeed be
used as training data in order to improve the HTR perfor-
mance at text-line level. For this purpose, we define three
settings: first, a conventional supervised learning on the
IAM dataset; second, transfer learning from the IAM to the
Rimes dataset; and third, a realistic few-shot setting on the
Spanish Numbers dataset. To be fairly comparable, we do
not use any data augmentation techniques nor pretrained
modules.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Style C:

0.0:
0.1:
0.2:
0.3:
0.4:
0.5:
0.6:
0.7:
0.8:
0.9:
1.0:

Style D:

Fig. 11: Example of interpolations in the style latent space.

Style Input:

Text En: “the progressive development of man is vitally dependent on invention.”
Output:

Text De: “die fortschreitende entwicklung des Menschen hangt entscheidend von der erfindung ab.”
Output:

Text Fr: “le developpement progressif de l’homme depend de facon vitale de l’invention.”
Output:

Text Es: “el desarrollo progresivo del hombre depende vitalmente de la invencion.”
Output:

Fig. 12: Generation on varied multi-lingual texts.

Text Input: “the progressive development of man is vitally dependent on invention.”

Style A:
Output:

Style B:
Output:

Style C:
Output:

Style D:
Output:

Fig. 13: Generation of varied styles.

In all the HTR experiments, we make use of an inde-
pendently trained handwritten text recognizer, which shares
the same architecture with R as detailed in Figure 5 and is
trained using the IAM training set at text-line level. If we
follow the same experimental setting along the first row

(baseline) of Table 7 with the jointly trained recognizer,
we achieve the CER of 16.73%. In contrast, in the first
row of Table 7, we can achieve a CER of 10.46% with an
independently trained recognizer. From the comparison, we
notice that the jointly trained recognizer becomes overfitted

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 6: Qualitative comparison with Alonso et al. [15], Fogel et al. [17], and Davis et al. [18]. These images are cropped
from their papers. Three random writing styles are selected in our results, where Style A is IAM writer 583, Style B is IAM
writer 281, and Style C is Rimes writer lot 13 01258.

Content [15] [17] [18]
Ours

Style A Style B Style C

"olibus"

"reparer"

"bonjour"

"famille"

"gorille"

"malade"

"certes"

"golf"

"des"

"ski"

"le"

during the image generation process. This overfitting effect
of the recognizer benefits the image generation, because the
overfitted recognizer is sensitive to the data noise, which in
return guides the generated image to be cleaner and more
readable.

5.7.1 Enhance the training set
The most straightforward way to improve the HTR perfor-
mance is to incorporate extra synthetically generated data to
the training set. In Table 7, we evaluate the improvements
in different cases. The first row shows the results when
using the IAM training set only. To keep the training data
balanced between real and generated samples, we generate
8, 000 text-line images based on the style of the IAM images
and a lexicon. Concerning the lexicon, we have two choices:
WikiText-103 or the groundtruth of IAM training set, shown
in the second and third row, respectively. Note that the HTR
performance is boosted when adding the 8, 000 syntheti-
cally generated samples. Furthermore, the choice of lexicon
also matters because the performance is further boosted
when using a similar lexicon to the target dataset. Finally,
we even apply data augmentation techniques on both the
real and generated training samples so that we end up with
the best result as shown in the fourth row. Furthermore, our
method shows a significant improvement over the perfor-
mance achieved by ScrabbleGAN [17] in comparable set-
tings. Thus, we can conclude that our proposed generative
method generates useful samples that are useful to train
HTR networks.

5.7.2 Transfer learning on a new dataset
Another useful setting is transfer learning, which consists
of transferring a trained recognizer to an unknown dataset.
In this case, the source data is the IAM dataset and the
target is the Rimes dataset. Both datasets are at text-line level
and share some characters in vocabularies such as English

TABLE 7: HTR experiments. Results are evaluated on the
IAM test set at text-line level. The Error rate reduction is
calculated taking the results of the first and last rows.

Aug. GAN Lexicon ScrabbleGAN [17] Proposed
CER WER CER WER

− − IAM 13.82 25.10 10.46 33.40
− X WikiText 9.66 31.87
− X IAM 9.37 30.58
X X IAM 13.57 23.98 8.62 26.69

Error Rate Reduction (%) 1.8 4.5 17.6 20.1

letters, space, punctuation marks and numbers. However,
the IAM dataset is in English while the Rimes dataset is in
French, so some special letters like “é” or “â” are exclusive
from the Rimes dataset. This scenario may occur in real use
cases in which there is a general recognizer, which has been
properly trained, that is used to recognize a target dataset,
containing some exclusive characters. Instead of manually
labeling a subset of target data and training the recognizer
again, we could provide a faster solution: to generate a set of
synthetic samples mimicking the style of target dataset and
then fine-tuning on it. In this way, the HTR performance on
the target data is boosted to some extent with a manual-free
effort, although it can not recognize those special characters.

Table 8 shows the transfer learning results. In the first
row, considered as a lower bound, the recognizer is pre-
trained on the IAM dataset and directly evaluated on the
Rimes test set. As an upper bound, we train the recog-
nizer from scratch using the Rimes dataset. Below these
two baselines, we show the performance when using the
IAM training set and 8, 000 synthetically generated samples
using IAM handwriting styles and random text strings from
WikiText-103. Secondly, we assume that we have access
to images of the Rimes dataset (but not their labels), and
we generate 8, 000 synthetic samples that mimic the style

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

of the Rimes dataset while sampling text strings from
WikiText-103. We observe that by incorporating these extra
synthetically generated samples, the HTR performance for
the unlabeled Rimes target dataset is boosted in a transfer
learning setting (the CER decreases from 27.3% down to
18.19%).

TABLE 8: Transfer learning setting from IAM to Rimes.
Results are evaluated on Rimes test set at text-line level.
Only the second row has access to labeled Rimes data, while
the Adaptation indicates the usage of unlabeled images and
external text strings.

Train set Adaptation CER WER

Baselines IAM − 27.30 74.57
Rimes − 6.45 19.56

Transfer IAM IAM + WikiText (8K) 20.55 63.20
IAM Rimes + WikiText (8K) 18.19 54.83

5.7.3 Few-shot setting on target dataset
We are also interested in investigating how to make use
of the generated images to improve the HTR performance
in another realistic scenario: when the target dataset is
very small, such as the Spanish Number dataset. Here, we
take our baseline method, a recognizer pretrained on IAM
dataset, and test it with the test set of Spanish Number
data directly, so that we obtain the lower bound with CER
27.82% as shown as the dashed black line in Figure 14.
We hypothesize that we have access to the whole labeled
training set of Spanish Number data (298 images), thus we
further fine-tune our pretrained recognizer and achieve a
CER of 4.94%, which is the ideal case as shown as the
dashed magenta line. Then, we select 5, 10, 20, 40, 80, 160
labeled real samples from the Spanish Number training
set randomly to carry on the next experiments. Based on
our baseline recognizer, we fine-tune on the selected subset
of labeled real images to end up with the red curve. Ten
individual experiments have been done for each subset of
labeled real data, and the data sampling process is also
randomly done for every experiment. From the red curve,
we can see that the performance is significantly improved
with few labeled real samples, while remaining steady when
adding more data.

For comparisons, we carry on experiments with a
sequence-to-sequence method that uses synthetic handwrit-
ten images based on TrueType fonts [50]. To avoid a large
unbalance between synthetic and real data, we make use
of 100, 300, 500, 700 and 900 synthetic data with a specific
amount of real subset (indicated as x-axis) to fine-tune the
recognizer. We carry on 10 individual experiments with
randomly selected synthetic and real subsets, so that we
obtain the green curve that behaves better than the red
one. The results prove that using extra synthetic data along
the training set boosts the HTR performance. However, the
handwriting style diversity that the synthetic data provides
is very limited to the chosen fonts, so the improvement is
also limited.

Since we already have the generative model pretrained
on the IAM dataset, we produce synthetic samples based
on the unlabeled Spanish Number images and random text

0 20 40 60 80 100 120 140 160
Num. of real data

5

10

15

20

25

CE
R

(%
)

direct inference
w/o generated samples
TrueType font synthetic samples
GAN generated samples
whole real training data (298 images)

Fig. 14: HTR improvement in a real use case on Spanish
Number dataset.

strings of WikiText-103. We follow the same experimental
setting with the TrueType font based experiments, and gen-
erate the blue curve. We observe that our generated samples
significantly boost the HTR performance over both the red
and green curves. Even more, when using our generated
samples with 160 labeled real ones, the recognizer performs
better than when using the whole real training set (298
images).

6 CONCLUSION AND FUTURE WORK

In this work we have presented a generative method to
produce realistic and varied artificially rendered samples
of handwritten text-line images. With the usage of periodic
padding module, the method is able to generate samples
of any length disregarding the length of style input. By re-
placing the Seq2Seq-based recognizer with the Transformer-
based one, the ability to generate longer text-line images
is obtained. Higher quality results are achieved by train-
ing with curriculum learning. Extensive qualitative results
have demonstrated the high capacity to generate realistic
handwritten text-line images by conditioning the generative
process with both visual appearance and textual content
information. In addition, our method is able to generate
any text-line sample without restriction to any predefined
vocabulary, and even work on other languages (except spe-
cial characters like accents). Also, and once properly trained,
the inference can also run in a few-shot setup for the target
handwriting style images.

Furthermore, comprehensive studies on making use of
generated samples in both supervised and transfer learning
settings have proven that our generated samples can effec-
tively boost the HTR performance with almost no manual
effort. Indeed, when comparing to other existing handwrit-
ten text generation methods, our method is the one that
obtains the most significant HTR improvement (an error
reduction of 17.6% in CER and 20.1% in WER).

The method presented in this paper focuses on hand-
written data, but in the future, we could further incor-
porate typed text data. The intuition will be that if the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

method could generate both cursive handwriting and non-
cursive typed text data, the visual style transfer from any
random handwritten images to unified typed text samples
may achieve a good performance, which could drastically
improve the HTR performance nowadays.

ACKNOWLEDGMENTS

This work has been partially supported by the grant
140/09421059 from Shantou University, the Spanish
project RTI2018-095645-B-C21, the grant 2016-DI-087 from
the Secretaria d’Universitats i Recerca del Departament
d’Economia i Coneixement de la Generalitat de Catalunya,
the Ramon y Cajal Fellowship RYC-2014-16831 and the
CERCA Program/ Generalitat de Catalunya.

REFERENCES

[1] P. Krishnan and C. Jawahar, “Hwnet v2: An efficient word image
representation for handwritten documents,” International Journal
on Document Analysis and Recognition, vol. 22, no. 4, pp. 387–405,
2019.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proceedings of the Conference on Neural Information Pro-
cessing Systems, 2014.

[3] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 8110–8119.

[4] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” arXiv preprint arXiv:1411.1784, 2014.

[5] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN:
Unified generative adversarial networks for multi-domain image-
to-image translation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[6] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence gener-
ative adversarial nets with policy gradient,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2017.

[7] D. Ha and D. Eck, “A neural representation of sketch drawings,”
in Proceedings of the International Conference on Learning Representa-
tions, 2018.

[8] N. Zheng, Y. Jiang, and D. Huang, “Strokenet: A neural paint-
ing environment,” in Proceedings of the International Conference on
Learning Representations, 2019.

[9] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “MuseGAN:
Multi-track sequential generative adversarial networks for sym-
bolic music generation and accompaniment,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2018.

[10] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decom-
posing motion and content for video generation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[11] A. Graves, “Generating sequences with recurrent neural net-
works,” arXiv preprint arXiv:1308.0850, 2013.

[12] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[13] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,” in
Proceedings of the International Conference on Machine Learning, 2015.

[14] B. Chang, Q. Zhang, S. Pan, and L. Meng, “Generating handwrit-
ten Chinese characters using CycleGAN,” in Proceedings of the IEEE
Winter Conference on Applications of Computer Vision, 2018.

[15] E. Alonso, B. Moysset, and R. Messina, “Adversarial generation of
handwritten text images conditioned on sequences,” in Proceedings
of the International Conference on Document Analysis and Recognition,
2019.

[16] L. Kang, P. Riba, Y. Wang, M. Rusiñol, A. Fornés, and M. Villegas,
“Ganwriting: Content-conditioned generation of styled handwrit-
ten word images,” in Proceedings of the European Conference on
Computer Vision, 2020.

[17] S. Fogel, H. Averbuch-Elor, S. Cohen, S. Mazor, and R. Litman,
“Scrabblegan: Semi-supervised varying length handwritten text
generation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp. 4324–4333.

[18] B. Davis, C. Tensmeyer, B. Price, C. Wigington, B. Morse, and
R. Jain, “Text and style conditioned gan for generation of offline
handwriting lines,” in Proceedings of the British Machine Vision
Conference, 2020.

[19] J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum, “Combining shape
and physical modelsfor online cursive handwriting synthesis,”
International Journal on Document Analysis and Recognition, vol. 7,
no. 4, pp. 219–227, 2005.

[20] Z. Lin and L. Wan, “Style-preserving english handwriting synthe-
sis,” Pattern Recognition, vol. 40, no. 7, pp. 2097–2109, 2007.

[21] T. Konidaris, B. Gatos, K. Ntzios, I. Pratikakis, S. Theodoridis,
and S. J. Perantonis, “Keyword-guided word spotting in histori-
cal printed documents using synthetic data and user feedback,”
International Journal on Document Analysis and Recognition, vol. 9,
no. 2-4, pp. 167–177, 2007.

[22] A. O. Thomas, A. Rusu, and V. Govindaraju, “Synthetic handwrit-
ten captchas,” Pattern Recognition, vol. 42, no. 12, pp. 3365–3373,
2009.

[23] T. S. Haines, O. Mac Aodha, and G. J. Brostow, “My text in your
handwriting,” ACM Transactions on Graphics, vol. 35, no. 3, pp. 1–
18, 2016.

[24] L. Wu, C. Zhang, J. Liu, J. Han, J. Liu, E. Ding, and X. Bai, “Editing
text in the wild,” in Proceedings of the 27th ACM international
conference on multimedia, 2019, pp. 1500–1508.

[25] P. Roy, S. Bhattacharya, S. Ghosh, and U. Pal, “Stefann: scene text
editor using font adaptive neural network,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020,
pp. 13 228–13 237.

[26] Q. Yang, J. Huang, and W. Lin, “Swaptext: Image based texts trans-
fer in scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14 700–14 709.

[27] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio, “Draw-
ing and recognizing chinese characters with recurrent neural net-
work,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 849–862, 2017.

[28] Y. Ganin, T. Kulkarni, I. Babuschkin, S. Eslami, and O. Vinyals,
“Synthesizing programs for images using reinforced adversarial
learning,” in Proceedings of the International Conference on Machine
Learning, 2018.

[29] M. Mayr, M. Stumpf, A. Nikolaou, M. Seuret, A. Maier, and
V. Christlein, “Spatio-temporal handwriting imitation,” arXiv
preprint arXiv:2003.10593, 2020.

[30] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
in Proceedings of the International Conference on Learning Representa-
tions, 2014.

[31] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu, “Auto-encoder
guided GAN for Chinese calligraphy synthesis,” in Proceedings of
the International Conference on Document Analysis and Recognition,
2017.

[32] Y. Tian, “zi2zi: Master chinese calligraphy with con-
ditional adversarial networks,” 2017. [Online]. Available:
https://github.com/kaonashi-tyc/zi2zi

[33] H. Jiang, G. Yang, K. Huang, and R. Zhang, “W-net: one-shot
arbitrary-style Chinese character generation with deep neural
networks,” in Proceedings of the International Conference on Neural
Information Processing, 2018.

[34] S.-J. Wu, C.-Y. Yang, and J. Y.-j. Hsu, “Calligan: Style and structure-
aware chinese calligraphy character generator,” arXiv preprint
arXiv:2005.12500, 2020.

[35] S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and
T. Darrell, “Multi-content gan for few-shot font style transfer,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7564–7573.

[36] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2006, pp. 369–376.

[37] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 172–189.

[38] L. Kang, P. Riba, M. Rusiñol, A. Fornés, and M. Villegas, “Pay
attention to what you read: Non-recurrent handwritten text-line
recognition,” arXiv preprint arXiv:2005.13044, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the Conference on Neural Information Processing
Systems, 2017, pp. 5998–6008.

[40] D. Dowson and B. Landau, “The fréchet distance between mul-
tivariate normal distributions,” Journal of multivariate analysis,
vol. 12, no. 3, pp. 450–455, 1982.

[41] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a
local nash equilibrium,” in Proceedings of the Conference on Neural
Information Processing Systems, 2017, pp. 6626–6637.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
Ieee, 2009, pp. 248–255.

[43] P. Wang, Y. Cao, C. Shen, L. Liu, and H. T. Shen, “Temporal
pyramid pooling-based convolutional neural network for action
recognition,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 27, no. 12, pp. 2613–2622, 2016.

[44] U.-V. Marti and H. Bunke, “The iam-database: an english sentence
database for offline handwriting recognition,” International Journal
on Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[45] E. Augustin, M. Carré, E. Grosicki, J.-M. Brodin, E. Geoffrois,
and F. Prêteux, “Rimes evaluation campaign for handwritten mail
processing,” in International Workshop on Frontiers in Handwriting
Recognition, 2006, pp. 231–235.

[46] A. H. Toselli, A. Juan, J. González, I. Salvador, E. Vidal, F. Casacu-
berta, D. Keysers, and H. Ney, “Integrated handwriting recog-
nition and interpretation using finite-state models,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 18,
no. 04, pp. 519–539, 2004.

[47] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[48] V. Frinken and H. Bunke, “Continuous handwritten script recog-
nition,” in Handbook of Document Image Processing and Recognition,
2014, pp. 391–425.

[49] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” in NeurIPS 2017 Autodiff Workshop, 2017.

[50] L. Kang, P. Riba, M. Villegas, A. Fornés, and M. Rusiñol, “Can-
didate fusion: Integrating language modelling into a sequence-
to-sequence handwritten word recognition architecture,” Pattern
Recognition, vol. 112, p. 107790, 2021.

Lei Kang received the B.Sc. degree from Jilin
University, Changchun, China in 2012, M.Sc. de-
gree from University of Science and Technology
of China, Hefei, China in 2015, and Ph.D. de-
gree from Computer Vision Center, Universitat
Autònoma de Barcelona, Barcelona, Spain and
omni:us, Berlin, Germany in 2020. He is cur-
rently a lecturer of Computer Science Dept. at
Shantou University, Shantou, China. His main
research interests include Transfer Learning,
Domain Adaptation, Attention Mechanisms of

Seq2Seq Model and GANs applied to the problem of Handwritten Text
Recognition and Synthesis.

Pau Riba received the B.Sc. degrees in Math-
ematics and Computer Science, the M.Sc. and
Ph.D. degrees in Computer Vision from the Uni-
versitat Autònoma de Barcelona, in 2015, 2016
and 2020, respectively. Currently, he worked
as a postdoctoral research fellow in the Com-
puter Vision Center. Currently, he works as
an AI research engineer at Helsing AI. His
main research interests revolve around Self-
supervised Learning, Graph-based Representa-
tions and Machine Learning. P. Riba has actively

participated in the organization of the GMPRDIA tutorial within the IC-
DAR 2019 and the GREC workshop within the ICDAR 2021. In addition,
he has been awarded the ”Best paper award” in ICFHR 2020 and ICPR
2018.

Marçal Rusiñol received his B.Sc., M.Sc. and
Ph.D. degrees in Computer Sciences from the
Universitat Autònoma de Barcelona, in 2004,
2006, and 2009 respectively. In 2012 and 2014
he worked as a Marie Curie research fellow at
Itesoft and Université de La Rochelle, France,
in 2012 and 2014 respectively. In 2019 he
co-founded the spinoff company AllRead MLT
where he currently works.

Alicia Fornés is a senior research fellow at the
Universitat Autonoma (UAB) de Barcelona and
the Computer Vision Center. She obtained the
Ph.D. degree in Computer Science from the UAB
in 2009. She was the recipient of the AERFAI
(Spanish brand of the IAPR, International As-
sociation for Pattern Recognition) best thesis
award 20092010, and the IAPR/ICDAR Young
Investigator Award in 2017. She has more than
100 publications related to document analysis
and recognition. Her research interests include

document image analysis, handwriting recognition, optical music recog-
nition, writer identification and digital humanities.

Mauricio Villegas received M.Sc degree on Pat-
tern Recognition and Ph.D. degree on Com-
puter Science from the Universitat Politècnica
de València, in 2008 and 2011, respectively. He
is currently a Senior Data Scientist at omni:us,
Berlin, Germany. He participated in two EU
funded projects FP7 and H2020, both related
to hand-written text recognition, and organized
competitions related to automatic image anno-
tation (ImageCLEF 2013-2016), handwritten text
recognition (ICDAR 2017) and handwritten doc-

ument retrieval (ImageCLEF 2016).

