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Abstract In this paper we address the problem of
symbol spotting in technical document images applied to
scanned and vectorized line drawings. Like any informa-
tion spotting architecture, our approach has two com-
ponents. First, symbols are decomposed in primitives
which are compactly represented and second a primi-
tive indexing structure aims to efficiently retrieve similar
primitives. Primitives are encoded in terms of attributed
strings representing closed regions. Similar strings are
clustered in a lookup table so that the set median strings
act as indexing keys. A voting scheme formulates hy-
pothesis in certain locations of the line drawing image
where there is a high presence of regions similar to the
queried ones, and therefore, a high probability to find the
queried graphical symbol. The proposed approach is il-
lustrated in a framework consisting in spotting furniture
symbols in architectural drawings. It has been proved to
work even in the presence of noise and distortion intro-
duced by the scanning and raster-to-vector processes.

Keywords: Document Image Analysis, Graphics Recog-
nition, Symbol Spotting, Graphical Indexing Techniques,
Cyclic String Matching.

Originality and Contribution

In this paper we focus on the problem of symbol spot-
ting in graphical document images. Information spotting
can be defined as locating queried items in document
images contained in large databases for indexation, nav-
igation and retrieval purposes. A spotting process re-
quires a primitive extraction step and an indexing strat-
egy. When it is applied to text documents, both printed
or handwritten, it is called word spotting, whereas when
it is applied to graphical documents it is called sym-
bol spotting. Word spotting can benefit from the one-
dimensional nature of text and underlying language mod-
els. It is a more mature problem than symbol spotting.

The main contribution of this work is twofold. First,
the application itself, i.e. symbol spotting in technical
drawings. Symbol recognition is a central problem of
graphical document analysis. It is a particular case of
the shape recognition problem. But an emerging interest
in the field of document analysis is to recognize symbols
without previous segmentation. This segmentation-free
recognition allows to query by shape document images,
which is useful to browse, categorize or even index line
drawings by sketch. Second, from a methodological point
of view, we propose a novel structural approach for in-
dexing vectorized data. In our approach, polygonally ap-
proximated closed regions contours are encoded by at-
tributed strings. Thus, strings are used as indexation
keys of a lookup table, after clustering them according
to a median string formalism.

1 Introduction

The management of a large amount of digital data is of
widespread interest. Nowadays many documents are still
stored in paper format. A digitization of these technical
documents and their organization in digital libraries be-
comes necessary. Documents are the basis of corporate
information workflows. Space saving and digital preser-
vation justify digitizing documents and storing them in
image databases. But the raw image format is not rich
enough, other challenging interests arise. Document min-
ing, i.e. browsing, navigation, querying or classification
in terms of document contents are useful activities. It re-
quires efficient indexation methods to be incorporated to
digital libraries. Textual documents make use of the na-
ture of alphanumeric information, i.e. it is one-dimensional
information that may be sorted, and dictionaries and
language models underlie the indexation processes. But
technical drawings like architectural plans, maps or elec-
tronic diagrams have the added difficulty of containing
bi-dimensional graphical data. In addition, as line draw-
ings are designed with Computer Aided Design (CAD)
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software, when digitalizing these documents, a vector-
ized file format is preferred and a raster-to-vector process
has to be applied after scanning. As a result of that,
technical document mining applications have to face two
different noise sources, namely the inherent noise aris-
ing from the scanning process, and then the errors in-
troduced by the raster-to-vector methods. Despite these
drawbacks, the vetorized representation is preferred as
it offers a compact data representation and makes the
documents easy to edit and modify. Usually, the archi-
tects or engineers re-use data from previous projects for
their new designs. In this context, an efficient application
aiming to query graphical symbols in digital libraries of
scanned technical line drawings is essential as pointed
by Tombre and Lamiroy in [1]. Indexing these technical
documents is a requirement when the application has to
deal with a big amount of data stored in the library.

The problem of symbol spotting in graphical doc-
ument images is here solved by means of an indexing
lookup table (LUT). Usually, spotting has been applied
to text documents and we can find in the literature sev-
eral works focusing on this topic. Rath and Manmatha
faced in [2] the problem of spotting handwritten words
in historic documents. Kuo and Agazzi presented in [3]
a spotting framework for machine printed text. And re-
cently Lu and Tan presented in [4] a spotting method
based on word codings. Even if these techniques can not
be applied to spot graphical elements since they focus on
one-dimensional data, these system architectures are still
valid four our purpose. Generally speaking, the spotting
problem can be defined as the retrieval of a set of zones
of interest from a document image database which are
likely to contain an instance of the queried item. Spot-
ting systems are usually queried by example. That is,
the user segments an item he wants to retrieve from the
document database and this cropped image acts as in-
put of the system. The desired output should be a ranked
list of zones of interest likely to contain similar items to
the queried one. A spotting process requires a descriptor
and an indexing strategy. Because of this architecture,
descriptors require to be simple and compact, in order
to be able to be organized in an indexation structure
with quick access. If more precise recognition rates are
required, a more sophisticated symbol recognition ap-
proach could afterwards focus on each of these zones of
interest. Cordella and Vento reviewed in [5] and Lladós
et al. in [6] the state of the art on symbol recognition.

The advantage of spotting methods is that they are
able to tackle with recognition and segmentation at the
same time. Symbol spotting framework differs from usual
Content Based Image Retrieval (CBIR) systems since
the desired output is not a set of images containing the
queried shape, but a set of cropped zones of interest from
different images containing instances of the query. CBIR
methods assume that the images in the collection are al-
ready segmented and are always taken as a unit. When
trying to locate some zones of interest in large document

images a different problem than CBIR has to be faced as
it is desired to locate some graphical shapes appearing
among a cluttered environment. For example, Califano
and Mohan presented in [7] an indexing system to spot
shapes in non-segmented images. Indexing strategies are
usually formed by a primitive organization and cluster-
ing in an indexing table followed by a voting process, as
the well-known generalized Hough transform introduced
by Ballard in [8], to reinforce the proposed hypothetic
locations where the symbol can be found.

The existing literature on primitive indexing meth-
ods usually follows the idea of geometric hashing intro-
duced by Lamdan and Wolfson [9]. Geometric hashing
takes the coordinates of two point sets used as indexes
and it is able to compare two shapes under some trans-
formations such as translations, scaling and rotation;
yielding good results for shape discrimination as shown
by Cohen and Guibas [10]. Even affine and projective
transformations are tolerated. Lamiroy and Gros [11]
proposed an enhancement of geometric hashing for 3D
polyhedral object recognition. However, for both sym-
bol and object recognition, geometric hashing needs a
previous step of reference points extraction, as for in-
stance high curvature points. The major disadvantage
of the method is that the same subset has to be chosen
for both the model image and the previously acquired
images. Most approaches compute a polygonal approx-
imation of the contour shape to recognize, taking the
resulting segments as primitives to encode with geomet-
ric hashing.

In the presence of noise of scanned documents, the
raster-to-vector process usually results in vectors with
considerable deformation and makes pattern description
unstable. Besides, vectorization algorithms usually fail
on junction positions and tend to fragment segments.
Such drawbacks entail a lower performance of geometric
hashing since it is very hard to guarantee the same point
set selection. In this paper we propose a method aimed to
face up these distortions. First, closed regions contours
composing a symbol are taken as primitives which act
as discriminative features among different shapes. Then,
these region contours are represented by a chain of adja-
cent segments – polyline–. We can find in the literature
several works which try to encode shapes by strings of
boundary segments. For instance, Stein and Medioni pre-
sented in [12] a shape descriptor based on a feature vec-
tor of length and angles of the chain of segments which
approximates the boundary of the shape. This descrip-
tor yields good recognition results if the extracted con-
tours are not very corrupted by noise. However this kind
of approaches are still dependent of the number of seg-
ments composing two shapes to match. In the method
we present, as we take polylines as primitives instead of
segments, we avoid the influence of the segment frag-
mentation of the raster-to-vector algorithms, and simi-
lar primitives are compared independently of the num-
ber of segments which approximate them. A polyline is
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represented by an attributed cyclic string and thus two
polylines are compared taking into account the differ-
ent string edit operations needed to transform a string
to another. The use of the string matching algorithm to
compute a similarity measure also benefits the compu-
tation of median strings. To build an indexing lookup
table, similar strings are clustered and a representative
of each cluster is computed as a set median string. These
set median strings act as indexing keys.

The remainder of this paper is organized as follows:
we introduce in the next section how we represent and
encode the symbols in terms of regions taken as prim-
itives and polygonally approximated. In section 3, the
proposed string edit distance is presented as a similar-
ity measure between polylines; starting with the basics
of the string theory and focusing on the proposed at-
tributed string matching for closed polylines recognition.
Subsequently, in section 4, we describe the architecture
of the spotting process: the used method to build the
lookup table clustering the representative regions, the
querying process to activate table entries and finally the
voting scheme to find the zones of interest where the
symbol can be found. Section 5 provides the experimen-
tal results and finally section 6 concludes with a sum-
mary and a discussion of extensions and future work.

2 Primitive Level Processing

The first step in a symbol spotting framework is to pre-
process the scanned images and to decompose in primi-
tives the target documents as well as the queried mod-
els. Let us briefly explain in the next subsections the
preprocessing step and the primitive extraction.

2.1 Preprocessing Steps

Let us first introduce how the technical line drawings are
preprocessed. The preprocessing step is formed by two
different phases: a denoising process working at pixel
level to remove the distortions introduced by the scan-
ning process and a raster-to-vector process aiming to
polygonally approximate the raw image.

First, the technical drawings are scanned and the
grayscale images are binarized and denoised using simple
binary operations based on morphological operations.
When working with documents which have been printed
years ago and then scanned, the inherent noise and dis-
tortions as warping, paper folds, paper stains, etc. aris-
ing from these processes have to be faced. The interested
reader is referred to Loce and Dougherty’s review [13] of
some simple existing techniques for digital acquired doc-
ument enhancement and restoration.

Moreover, when computing the vectorization step some
other problems arise. As stated by Tombre et al. in [14],
nowadays it does not exist any “perfect” raster-to-vector

algorithm and each method has its own lacks and pro-
duce its characteristic errors. Rather than representing
symbols with a polygonal approximation based on a skele-
tonisation, our choice focus on computing a closed region
labelling and extraction based on a connected compo-
nent analysis. The contour of these closed regions is then
polygonally approximated using the Rosin and West [15]
algorithm.

2.2 Shape Representation in Terms of Polygonal
Approximation of Primitives

Let us now detail how the extracted regions are repre-
sented and encoded in a suitable way to be compared
afterwards.

The polygonal approximation of the contour of the
closed regions is computed. Afterwards, an association
of chains of adjacent segments resulting in a polyline is
done. These polylines are encoded as attributed strings
used as primitives to describe the symbol to be recog-
nized.

Formally, let R be the contour of a closed region
which is polygonally approximated and represented by
the chain of adjacent segments P (R) = {s1...sn} con-
sisting of n segments si. Each segment si is attributed
with the tuple (li, φi), where li denotes the length of the
segment si and φi denotes the angle between si and the
previous segment si−1 in the counterclockwise direction.
A symbol is then described in terms of its composing p
region contours and denoted as S = {P (R1)...P (Rp)}.
We can see a graphical example in Fig. 1. Let us see in
the next section how we can compute a distance between
two strings representing a closed region.

3 Polyline Comparison Using Cyclic String
Matching

We base the comparison of two polylines representing
a closed region contour on the string edit distance algo-
rithm. We can find in the literature a number of methods
which use string matching techniques for shape recogni-
tion purposes, as for instance the ones presented by Wolf-
son in [16] or by Kaygin and Bulut in [17]. Of course, the
most important point when using this kind of distances
is the attributed string representation and the operation
cost definition. Let us first introduce some basic defini-
tions and notations from string theory stated by Wagner
and Fischer [18].

3.1 String Matching Algorithm

Let Σ be an alphabet of elements, Σ∗ the set of all finite
strings over Σ and A = a1...an ∈ Σ∗, B = b1...bm ∈ Σ∗

two strings with n,m ≥ 0. The distance between A and
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Fig. 1 Symbol representation in terms of polygonal approximation of closed region contours. Each of these region contours
are represented by strings attributed by length and angles.

B, δ(A,B), is defined in terms of elementary edit op-
erations required to transform A into B with minimum
cost. Conventionally, three edit operations are defined.
The substitution of an element a ∈ Σ in A by an element
b ∈ Σ in B, denoted as a → b. The insertion of an ele-
ment b ∈ Σ in B, denoted as λ → b. Finally, the deletion
of an element a ∈ Σ in A, denoted as a → λ, where λ de-
notes the empty element. Let A be a string A = a1...an.
The string B = b1...bm, m ≤ n, is a substring of A if
A = a1...ai−1Baj+1...an. The substring B is denoted as
Ai,j = ai...aj , 1 ≤ i, j ≤ n. Tsay and Yu proposed in [19]
the merge operation denoted as Ai,j → a which approx-
imates the substring Ai,j into an element a ∈ Σ. This
operation becomes essential when facing distorted data
or affected by changes in scale since it allows to match
two strings with different number of elements.

In order to compute the distance between two strings,
each of the four edit operations have an associated cost
γ. These costs are defined depending on the attributes
which encode the string. In our case, as we want to com-
pare polylines with a string matching algorithm the costs
are defined in terms of segment comparisons.

However, the use of the string matching algorithm
for closed shape recognition presents a problem. The
starting symbol of the corresponding string has to be
determined in order to compute the edit path between
two strings. Maes proposed in [20] to represent polygo-
nal shapes by cyclic strings thus avoiding the influence
of the starting segment. Whereas basic string matching
has a complexity of O(nm), the algorithm proposed by
Maes can compute cyclic string matching with a com-
plexity of O(nm log m), since all the paths in the edit
operation table can be chosen such that two different

paths never cross. For the sake of simplicity, from now
on with string matching we will refer to the cyclic string
matching algorithm proposed by Maes.

3.2 Cost Definition to Match Cyclic Chains of Segments

Visually, two chains of segments are similar if the length
attributes and angles between consecutive segments can
be aligned. In the literature on polygonal shape recog-
nition, most approaches base the distance definition be-
tween two polygonal shapes on length and angle differ-
ences. For example, Arkin et al. used in [21] the turn-
ing function which gives the angle between the counter-
clockwise tangent and the x-axis as a function of the arc
length. Their results are in accordance with the intuitive
notion of shape similarity.

Let A and B be two chains of adjacent segments,
represented as strings, with total lengths |A| = n and
|B| = m and with respectively attributed string repre-
sentations:

A = (lA1 ; φA
1 )...(lAn ; φA

n ) and

B = (lB1 ;φB
1 )...(lBm;φB

m)
(1)

The costs functions for attributed string matching
are as follows:
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γ((lAi ;φA
i ) → (lBj ;φB

j )) = |φA
i −φB

j |
360 +

∣∣∣∣
lAi
|A| −

lBj
|B|

∣∣∣∣
γ(λ → (lBj ;φB

j )) = lBj
|B|

γ((lAi ;φA
i ) → λ) = lAi

|A|

γ((lAi,j ; φ
A
i,j) → (lAu ; φA

u )) =
(∑j

k=i
lAk

)
−lAu∑j

k=i
lA
k

(2)

which are the proposed cost functions inspired by the
ones proposed by Tsay and Tsai in [22] where they use
string matching for shape recognition. Maes proposed
in [20] to use a weighting factor in the length costs to
compensate undesirable cost bias for angle differences.
However, in our experiments we did not observe any
improvement in adding such parameter. Finally, for the
sake of simplicity, the previous operations are grouped
by a block substitution using the merge operation. The
total cost of substituting a whole sequence of symbols
by another is computed as follows:

γ(Ai,j → Bk,l) =
γ(Ai,j → u) + γ(Bk,l → v) + γ(u → v) (3)

being u and v the segments starting at the initial
point of Ai and Bk and ending at the final point of Aj

and Bl respectively.
As all the length comparisons are weighted by the

total perimeter of the chain of segments and the an-
gles are computed relatively to the previous segment,
the proposed string matching approach is rotation and
translation invariant. In addition, the merge operation
attributes low edit costs to primitives undergoing noisy
transformations as the inherent segment fragmentation
from the raster-to-vector process and aims to compare
strings with different number of segments making the
system tolerant to segment cardinality and to scale changes.

4 Spotting Method

Given a technical document, the idea is to form clusters
of similar strings in a lookup table. In addition, each
entry of this table has a representative string acting as
its indexing key.

The whole spotting method is divided in three dif-
ferent parts. Firstly the off-line step to build the lookup
table. Secondly, the symbol querying process by the in-
dexing function. Finally, the voting scheme which spots
the zones of interest where there is high probability to
find the symbol. Let us further describe the above steps.

4.1 Lookup Table Construction

Each lookup table entry represents a cluster of similar
strings appearing in the document database and consists
of two different items: a representative polyline of each

cluster which acts as indexing key and the stored list
of locations –translation vectors– where we can find the
polylines belonging to this cluster.

Generally speaking, the representative polyline of each
cluster can be computed in two ways, namely the mean
string or the set median string. As proposed in Sánchez
et al. in [23], the mean string M over a string cluster
C = {A1...An} is defined as:

M = arg min
M∈Σ∗

(
n∑

i=1

δ(Ai,M)) (4)

The mean string is computed as a new string that
represents the average shape among all the strings in
the set. The main drawback of this approach is its com-
putational cost which increases with a large number of
shapes. In our case, we have experimentally verified that
a set median string is useful enough to be used as index
of a table entry. Besides, it is less expensive since we do
not need to compute a new shape being an exact shape
average, but to select it between the shapes composing
the cluster.

We first define the polyline P̃C which is the set me-
dian string acting as the representative of a certain clus-
ter C = {P (R1)...P (Rn)}. It is computed as the string in
C with minimum accumulated distance from each other
P (Ri) in C as follows:

P̃C = arg min
P̃C∈C

(
n∑

i=1

δ(P (Ri), P̃C)) (5)

Then, when a new polyline P (Ri) has to be added
to the lookup table, the selection of the cluster to which
it belongs is done by applying the string matching algo-
rithm proposed above. We select the cluster where the
cost of editing the string P (Ri) to match the set median
string P̃C is lower than a threshold thr. We add P (Ri)
to this cluster. The set median string P̃C of the corre-
sponding cluster is recomputed in order to keep offering
a good cluster representative. If no cluster has a set me-
dian string similar to P (Ri) we define a new cluster.

The set median strings act as indexing keys of the
lookup table where at each entry a list of translation
vectors −→vi = (xi, yi) where (xi, yi) are the coordinates
of the middle point of the polyline P (Ri) are stored. We
can see the details in the Algorithm 1:

Algorithm 1 Build a LUT from a list of primitives.
for i = 0 to length(R) do

if LUT [P (Ri)] is not NULL then
LUT [P (Ri)].AddV alue(−→vi )
LUT [P (Ri)].UpdateKey()

else
LUT [P (Ri)].CreateNewPos(−→vi )

end if
end for
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When applying the algorithm described above, the
order followed to add polylines in the LUT is important
and the primitive clustering can be influenced by this
fact. However as in spotting applications the user can
add more and more documents to the database at any
time, we preferred to use an incremental primitive clus-
tering than a classical classification method which would
need a learning stage, making it difficult to increase the
data collection. In addition, the coarse primitive cluster-
ing offered by the LUT is compensated by the use of a
voting scheme.

4.2 Querying Symbols: Activating Table Entries

Given a symbol S = {P (R1)...P (Rp)} to query and the
lookup table containing q entries, a maximum of p table
entries are activated resulting on the one hand in a list
of locations where cast votes and on the other hand in a
list of vote values. A table entry represented by a certain
median string P̃j is activated depending on the following
condition:

δ(P (Ri), P̃j) < thr
where 1 ≤ i ≤ p and 1 ≤ j ≤ q

(6)

The values of the votes at each activated entry are
proportional to every δ(P (Ri), P̃j). Symbol detection is
then performed as a voting procedure in terms of the
indexation over the lookup table. The locations where
there is a presence of most of the polylines composing the
symbol S form clusters of coherent votes. The presence
of similar polylines in other locations of the line drawing
provokes false positive votes which are scattered into the
voting space.

4.3 Voting Scheme

The voting space is a three dimensional space (x, y, s)
consisting of 2D position coordinates and a scale ra-
tio. Given a query string Pq we accumulate votes in the
translation coordinates −→vi = (xi, yi) of the line drawing
image. The third dimension of this space represents the
scale factor between the query polyline and the poly-
lines stored in the LUT. This voting scheme formulates
hypothesis of position and scale of the queried symbol.
The zones of the scanned line drawing where we find sim-
ilar region contours at a similar scale that the ones that
form the query symbol tend to accumulate more votes
and thus to form clusters in the voting space. The prob-
lem of finding zones where a symbol is likely to be found
is then reduced to a local maxima localization problem
in the voting space.

For the sake of simplicity the voting space is split
into several bins, I(1,1,1)...I(m,n,s) named buckets. The
bin size has to be related to the scale of the symbol so

the different votes fall in nearby buckets. In our experi-
ments the grid size has been empirically set and is deter-
mined in terms of the size of the original image. In our
case, m and n are determined such as max(m,n) = 128,
preserving the aspect ratio of the original image. The
scale dimension is sampled to s = 8 possible buckets.
Following a similar idea than the proposed by Lorenz
and Monagan in [24] we use a voting method known in
signal processing as anti aliasing to relate (−→vi , s) to a set
of Ij neighboring buckets, based on the Euclidean dis-
tance between the voting location and the discrete bin
partition buckets. Each (−→vi , s) has the edit cost vote to
distribute among its eight neighboring buckets, depend-
ing on their proximity.

Given a symbol S, the activation of the lookup ta-
ble entries results on a list L = {(−→v1 , s1)...(−→vn, sn)} of
translation vectors. Being d((−→vi , si), Ij) the Euclidean
distance between (−→vi , si) and one of the eight neighbor-
ing buckets Ij we define the value of the vote V (Ij) re-
ceived in the bucket Ij is accumulated as:

V (Ij) = V (Ij) +
w1

d((−→vi , s), Ij)
+

w2

δ(P (Ri), P̃j)
(7)

Where w1 and w2 weight the distance factor and the
edit cost. We can see an example of the voting distribu-
tion scheme in Fig. 2.

Fig. 2 Anti-aliasing method to cast votes. Even if two votes
fall in different buckets due to the discretization, they still
contribute to form coherent peaks in the desired values of
the voting space.

As we can see, the anti aliasing method reduces the
problem to work with a discrete grid to distribute votes.
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Voting schemes are only efficient if a high number of
votes fall in the right bin, so that the bin is easily de-
tected among the background noise. If some votes fall in
the neighboring bins, the significance of the correct bin
decreases. Since the votes are now distributed among
nearby buckets, even if the locations of a symbol do not
fit a unique bin, the votes of close buckets collaborate
between them.

Since our framework is a retrieval by query process,
given a query symbol, the top k zones of interest in terms
of accumulated votes are retrieved and returned to the
user. The more primitives a symbol has, the more votes
can be accumulated in a given zone. However, since only
one query is done at the same time, there is no need to
normalize the votes to retrieve the zones of interest.

5 Experimental Results

In order to evaluate the proposed spotting methodology
we present three different experiments. The first one only
focuses on the string matching algorithm as a distance
measure between polygonal shapes. It aims to empiri-
cally determine a well suited thr value. The second ex-
periment is designed to test if the primitives proposed
to represent a graphical symbol are sufficiently discrim-
inative. Finally, the third experiment tests the symbol
spotting method by querying a document image data-
base of real architectural floor-plans.

5.1 Silhouette Shape Matching

The first experiment is designed to test the efficiency
of the string matching algorithm as a shape descrip-
tor. The algorithm is used as a distance between two
shapes represented by a polygonally approximated con-
tour. This experiment also aims to empirically determine
a well suited value of the threshold thr which determines
whether two polylines are similar or not. We used a sub-
set of isolated silhouette shapes from the MPEG-7 core
experiment described by Latecki et al. in [25].

For each of the 15 shape models shown in Fig. 3, the
noise model presented by Kanungo et al. in [26] is applied
to generate 300 degraded images per class, which are
then polygonally approximated. We can also see in Fig.
3 the variation of the number of segments per class. With
all this dataset we run a classification experiment. The
distance between each model and the 4500 vectorized
shapes is computed by using the cyclic string matching.
These results are sorted by increasing distance to extract
a Receiver Operating Characteristic (ROC) curve (the
interested reader is referred to paper by Fawcett [27]
on ROC analysis), which plots the true positive rates
against the false positive rates.

We can appreciate in Fig. 4 the tradeoff between the
correctly classified items and the appearance of false pos-
itives. In our framework, as we use a voting scheme to

1.72 3.75 2 2.69 2.94

2.9 3.23 27.69 3.02 4.04

1.85 3.23 4.89 1.91 7.34

Fig. 3 Selection of the MPEG database and the number of
segments variation per class.

Fig. 4 Receiver operating characteristic curve for the silhou-
ette matching experiment.

accumulate evidences, we are more interested in achiev-
ing high true positive rates values rather than having
low false positive rates. We can find in Table 1 the ob-
tained false positives rates and thresholds for different
true positives rates.

Table 1 Obtained false positive rates and decision threshold
thr for several true positive rates.

True Positive rates False Positive rates thr

0.25 0.025 0.008
0.5 0.105 0.014
0.75 0.281 0.024
0.9 0.511 0.035

In the presented spotting method the LUT offers a
coarse clustering that is then refined by the use of a
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voting scheme. The presence of false positives in a LUT
entry is not a problem but we want to minimize the
missed primitives. In our experiments, we used a thr
value of 0.03 which guarantees about a 75% of correctly
clustered shapes in the LUT. False positives appear but
the voting strategy hopefully discards them.

5.2 Contours vs. Skeletons

The second test aims to see if the region contours are
suitable primitives to represent a graphical symbol. We
can find in the literature mainly two strategies to vec-
torize graphical documents. One which is based on a
skeleton extraction followed by a polygonal approxima-
tion and another one which approximates the extracted
contours. We compare the performance of the presented
method by using both vectorization strategies. To carry
this experiment, a real floor-plan has been degraded to
build a collection of 500 synthetically distorted plans
again by using the noise method of Kanungo et al.. These
distorted images are then polygonally approximated with
both representations: contours and skeleton primitives.
We can appreciate the differences between both primi-
tives in Fig. 5(d) and 5(e).

(a)

(b) (c) (d) (e)

Fig. 5 Symbol Primitive Representations. (a) Model floor-
plan. (b) Zoom of the toilet symbol. (c) Degraded image. (d)
Symbol with skeleton primitives. (e) Symbol with contour
primitives.

In Fig. 6 we can see a precision and recall graph
(the interested reader is referred to van Rijsbergen book
[28] on information retrieval) showing that the selected
primitives are more expressive since the spotting method
using this representation outperforms the skeleton in all
cases. In average there is a gain near a 17.5% of precision
for the same recall values. Details are shown in Table 3,
where we can see the number of false positives we have

when requesting a certain number of the 500 possible so-
lutions. In addition, using contours as primitives, in only
5 of the 500 images the queried symbol has been missed
and using the skeleton we miss the symbol in 73 of the
500 images. This yields to a significant gain in the recall
value when using contours instead of approximating the
symbol skeleton.

Table 2 Number of false positives when requesting a certain
number of retrieved zones.

Primitives Retrieved Items

200 300 400 475

False positives with Contours 6 7 29 159
False positives with Skeletons 73 76 89 273

Fig. 6 Precision and recall plot when spotting the toilet
symbol shown in Fig. 5 using two different symbol primitives.
The contours outperforms in both precision and recall the
skeleton primitives.

5.3 Symbol Spotting in a Document Database

Finally, we tested our method with a collection of ten
real floor-plans and ten different symbols as queries. The
query symbols appear in the floor-plans several times
and are segmented by cropping a zone in the floor-plan
image and vectorizing it. Each floor-plan has been polyg-
onally approximated and ground-truthed. The database
consist on approximately 14200 polylines which after the
LUT construction result in near 320 table entries. We
can see in Fig. 7 the precision and recall plot result-
ing from spotting these symbols in the whole floor-plan
database.

In Table 3 we present a detailed set of measures to
evaluate the performance of retrieval systems which aim
to evaluate the spotting architecture. As we can see, the
recall ratio is quite good. However there is an impor-
tant number of false positives in the results which harm
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Table 3 Detailed retrieval measures for each model symbol for the symbol spotting in a document database experiment.

Symbol Retrieval Measures

Class p Precision Recall F -score AveP Time
(%) (%) (%) (%) (secs./plan)

Bidet 4 30.8 100 47.1 87.5 0.76
Chair 5 36.8 100 53.8 83.3 0.64
Burners 9 5.1 100 9.6 59.1 1.09
Toilet 5 50 37.5 42.9 27.1 0.98
Toilet sink 5 30 100 46.2 68.7 1.89
Kitchen sink 5 11.8 50 19 33.3 1.16
Single sofa 4 37.5 100 54.6 100 0.43
Double sofa 6 15 75 25 65 0.22
Table 7 16.7 100 28.6 100 0.24
Tv set 4 20 100 33.3 95 0.12

AVERAGE 5.4 25.4 86.2 36 71.9 0.75

Fig. 7 Precision and recall plot for symbol spotting in the
document database.

the precision value. The F -score is a composite measure
which aims to rank the results. However, the most inter-
esting point here is to notice the difference between the
precision and the average precision AveP values. The av-
erage precision is a measure of quality which rewards the
earliest return of relevant items. As we can see, even if in
our experiments the precision values are quite low, the
average precisions are significantly higher. That means
that usually the false positives are ranked worst than
the correct results, as we can also see in the qualitative
results shown in Fig. 8. Finally, we also show the av-
erage time taken by our software prototype to spot a
symbol per plan. It is remarkable that usually the sym-
bols which are composed by common simple primitive
shapes (circles, squares, etc.) are the ones which are more
time consuming since the entries of the LUT are more
populated and more hypothesis have to be considered.
No significant differences due to the number of polylines
composing a symbol can be appreciated.

6 Conclusions

In this paper we have presented a method to spot graph-
ical symbols in scanned technical documents. First a

suitable symbol representation as a set of closed region
contours and its codification with attributed strings has
been presented. The distance definition using a cyclic
string matching algorithm allows to tolerate the segment
fragmentation problem. Then, a clustering of salient zones
of interest and a voting method have been presented and
tested to spot symbols in real technical line drawings.

The experiments show that the representation and
distance approaches are able to tackle with the inher-
ent noise arising from the scanning process and the dis-
tortions introduced by the raster-to-vector algorithms.
The presence of false positives is not a critical problem
since the purpose of spotting methods is to find by a
fast technique a coarse identification of zones where a
given symbol appears. Finally, we can see that the use
of voting strategies are of vital importance for spotting
problems. To reach higher precision one can use better
shape descriptors, however this also entails a complex-
ity increment. The accumulation of evidences allows to
work with a coarsely recognition in the indexing step.

However the presented method still suffers from some
drawbacks that must be improved in future work. The
order followed to add polylines in the LUT is determi-
nant and in some cases could lead to some misclassi-
fications. However for spotting applications where the
user can add more and more documents at any time,
the primitive clustering must be incremental. The use of
incremental classifiers such as iPCA [29] or iLDA [30]
applied to primitive clustering should be studied. An-
other concern is about the primitives describing a sym-
bol. The symbols of some other kind of line-drawings
such as electronic diagrams may have no loops and thus
they could not be indexed by the presented method. In
addition, the use of a voting scheme only has sense if
the symbols are formed by several primitives and then
several hypothesis can be casted in a given location. For
symbols consisting of a low number of regions, other de-
scribing features must be taken into account. The use
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(a) (b)

1st 2nd 3rd 4th 5th

V (I) = 54117 V (I) = 14070 V (I) = 12922 V (I) = 8790 V (I) = 8406

6th 7th 8th 9th 10th

V (I) = 6937 V (I) = 5419 V (I) = 5115 V (I) = 5072 V (I) = 1217
(c)

Fig. 8 Qualitative results for symbol spotting by cyclic string matching. (a) Vectorized floor-plan database. (b) Query example.
(d) Ranked top ten results.

of other primitives as for instance the chain points used
by Zuwala and Tabbone in [31] should be considered
in order to use our spotting methodology to technical
documents from domains other than the architectural.
Finally, the presented matching approach can not cope
with occlusions which will provoke the polylines to be
broken. A partial matching algorithm as presented in
[32] by Tănase et al. could be helpful in such situations.
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de Barcelona (Spain) and the Université
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