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Received: date / Accepted: date

Abstract This paper presents a supervised subspace

learning method called Kernel Generalized Discrimina-

tive Common Vectors (KGDCV), as a novel extension

of the known Discriminative Common Vectors method

with Kernels. Our method combines the advantages of

kernel methods to model complex data and solve non-

linear problems with moderate computational comple-

xity, with the better generalization properties of gene-

ralized approaches for large dimensional data. These

attractive combination makes KGDCV specially suited

for feature extraction and classification in computer vi-

sion, image processing and pattern recognition applica-

tions. Two different approaches to this generalization

are proposed, a first one based on the kernel trick (KT)

and a second one based on the nonlinear projection trick

(NPT) for even higher efficiency. Both methodologies

have been validated on four different image datasets

containing faces, objects and handwritten digits, and

compared against well known non-linear state-of-art me-

thods. Results show better discriminant properties than

other generalized approaches both linear or kernel. In

addition, the KGDCV-NPT approach presents a consi-

derable computational gain, without compromising the

accuracy of the model.
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1 Introduction

Statistical methods based on subspaces are extensively

applied in computer vision and machine learning [2,6,

7,8]. In particular, their role as dimensionality reduc-

tion and automatic feature extraction tools has been

crucial to mitigate the curse of dimensionality inher-

ent to image classification. Thus, subspace methods are

often used as preprocessing or feature selection stages

in order to facilitate learning by the classifier. In this

image context, the ratio between the dimensionality of
the input space and the training set size is usually very

large. This unbalance ratio poses serious difficulties in

the application of classifiers and machine learning algo-

rithms and affects their generalization ability and effi-

ciency. This situation is usually called the Small Sample

Size (SSS) problem [11]. While it can be mitigated by

acquiring larger datasets to balance the ratio, this is

not always possible.

As a consequence, there has been a need to develop

methods able to work under these constraints. Cevikalp

et al. [6] proposed a supervised method called Discri-

minant Common Vector (DCV) to specifically address

the SSS, based on a modified Fisher’s linear discrimi-

nant criterion [2]. This approach divides the feature

space into the range and the null subspaces, being the

later important for extracting useful discriminative fea-

tures for recognition. However, it can only be applied

when the number of samples is smaller than the di-

mensionality of the data. An extension of the DCV

method, the Generalized Discriminant Common Vec-
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tor (GDCV), also called Rough Common Vector (RCV)

was presented by Akihiko et al. [25], where the bases of

the method are reinterpreted and some assumptions are

relaxed. The GDCV method exhibits better generaliza-

tion properties in a wider range of applications, and

it can be applied for both small and large datasets re-

garding the dimension of the input space. As main lim-

itation, these methodologies do not perform well when

samples belonging to different classes are not separable

using linear transformations.

Traditionally, the Kernel Trick (KT) has been widely

used to extend linear methods to the nonlinear case [23,

21]. Kernel methods have aroused great interest in the

last decade since they are universal nonlinear approxi-

mators and facilitate solving complex problems where

the samples are not linearly separable as is the case of

many machine learning and pattern recognition appli-

cation. Kernel methods use nonlinear mapping to project

samples from the original space to a feature space where

the samples are expected to be easily separable, as de-

picted by the example in Figure 1. Specifically, the KT

operates by calculating an implicit projection to a space

of greater or even infinite dimension, where the linear

discriminant can be effectively applied to separate the

originally non-linear separable classes. Moreover, the

KT makes the kernel methods computationally efficient

in comparison with other nonlinear techniques, since

the nonlinear mapping function and the mapped sam-

ples are not used explicitly. They, however, require se-

lecting an appropriate kernel function, which must be

carefully chosen in every application to avoid numeri-

cal instabilities and overfitting problems, as well as pro-

blems associated to handling large datasets. For details

of how to select and tune kernel functions to particular

applications see [24].

By applying the KT approach, a variety of sub-

space based kernel methods have been proposed, includ-

ing Kernel Principal Component Analysis (KPCA) and

Kernel Discriminant Analysis (KDA) [28]. A Kernel In-

dependent Component Analysis (KICA) [17] by using

the KT and the InfoMax algorithm has also been pro-

posed for enhancing classification, but its application

is limited to classes statistically independent. KDA-

based approaches are better suited for supervised classi-

fication applications since a similar supervision process

is performed during the dimensionality reduction, but

they require solving an expensive optimisation problem

[3]. Efficient KDA approaches have been proposed as a

solution such as the Kernel Discriminant Analysis via

QR decomposition (KDAQR) [27], based on the QR de-

composition to replace the costly eigendecomposition of

the kernel matrix, and the Kernel Discriminant Analy-

sis by using Spectral Regression (KDASR) [3] which
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Fig. 1: Example of non-linearly separable data and its

mapping into linearly separable space through a non-

linear kernel.

combines spectral graph analysis and regularised re-

gression. Finally, a Discriminative Common Vector with

Kernel (KDCV) was originally proposed by Cevikalp

et al. [5,4] and extended for efficient implementation

in [29,27], at the expense of an slight numerical insta-

bility. However, all these techniques inherited the corre-

sponding DCV restrictions for small datasets regarding

the dimensionality of the samples.

In this paper we aim to combine the advantages of

KDCV for non-linear spaces and GDCV for better gen-

eralisation properties without restrictions on the train-

ing set size. Thus, the novel Kernel Generalized Dis-

criminative Common Vectors (KGDCV) is introduced

by extending the GDCV with kernels. This non lin-

ear extension is first achieved by applying the kernel

trick. A second alternative is also proposed based on the

Nonlinear Projection Trick (NPT) [16]. NPT explicitly

maps the input data into a reduced dimensional kernel

Hilbert space, using the eigenvalue decomposition of the

kernel matrix. Our approach is evaluated using a range

of different image classification problems and datasets,

including facial images, objects and handwritten dig-

its, that allow us to analyse its behaviour against diffe-

rent training set sizes. A comparison study is performed

in these scenarios against the conventional linear/non-

linear DCV-based methods and the well-known KICA

[17], KDAQR [27] and KDASR [3] methods.

The remainder of the paper is structured as follows.

Section 2 briefly introduces linear and nonlinear DCV

as background information. Section 3 presents the novel

KGDCV using both KT and NPT approaches, as main

contributions of this paper. Section 4 describes the em-

pirical validation and comparison with the state of the
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art, presents the results and analyse the proposed ap-

proach. Finally, Section 5 summarizes the main conclu-

sions. A list of acronyms is presented in Table 1 of the

appendix A.

2 Background

Let X be the training set composed of m =
∑c
j=1mj

samples belonging to c classes, where every class j has

mj samples. Let xij be a d-dimensional column vector

which denotes the ith sample from the jth class.

2.1 Linear DCV

In order to obtain the optimal projection W of the sam-

ples X to the new subspace, the bases of such subspace

U should be first calculated. These bases are obtained

by solving the eigenproblem of the within-scatter ma-

trix,

SXw =

c∑
j=1

mj∑
i=1

(xij − xj)(xij − xj)T = XcXc
T (1)

where xj is the average of the samples in the jth class,

and the centered data matrix, Xc, consists of column

vectors (xij − xj) for all j = 1 . . . c and i = 1 . . .mj .

The eigendecomposition or eigen-value/vector de-

composition (EVD) of SXw can be written in general

as:

EVD(SXw ) : XcXc
T = UΛUT (2)

= [Ur Uo]

[
Λr

0

] [
Ur

T

Uo
T

]
where U = [u1 . . . ud] is a column matrix formed by the

eigenvectors associated to the eigenvalues, λ1 ≥ . . . ≥
λd, contained in the diagonal matrix Λ. r is the range

of matrix SXw , that is, λi = 0 for all i > r.

By decomposing U into two matrices, Ur contain-

ing the eigenvectors associated to the non-zero eigen-

values, and Uo containing the eigenvectors associated

to the zero-value eigenvalues, DCV is able to separate

the feature space into two complementary subspaces,

the range space, R(SXw ) with bases Ur, and the null

space, N (SXw ) with bases Uo, respectively.

The DCV approach is an effective method for solv-

ing the SSS problem. If SXw is singular, all samples xij
belonging to class j can be mapped to a common vec-

tor xjcv = xj − UrUTr xj in the null space. This extract

the common properties of classes in the training set by

eliminating the differences of the samples in each class,

i.e. the features that are in the direction of the eigen-

vectors corresponding to the nonzero eigenvalues of the

within-class scatter matrix.

For classification, the centered version Xcom
c of

Xcom = [x1
cv . . . x

c
cv], with regard to the mean xcom =

(1/c)
∑c
j=1 x

j
cv, is calculated to compute the final pro-

jection matrix, W = orth(Xcom
c ) ∈ Rd×(c−1), and ob-

tain the discriminative common vectors as WTxj .

2.2 Linear GDCV

DCV can not be applied when d < (m−c), i.e. the num-

ber of samples is bigger than their dimensionality. This

case would lead to a non-singular within-class scatter

matrix, where the null space does not exist. Even if the

within-class scatter matrix is singular, the recognition

rate of the DCV may not be good if the dimensionality

of the null space is small. This SSS singularity problem

[14] is avoided by extending the null space to include

not only null directions or basis vectors, i.e. λi = 0, but

also a set of almost null directions, λi ≈ 0. This ex-

tension of the null space also implies the corresponding

restriction of the range space. The projection basis Uα
of the new restricted range space will be the basis of

the learned subspace.

The scattering added to the null space is measured

by the trace tr(·) as tr(UTα S
X
w Uα). This quantity is at

most tr(SXw ) when no directions are removed, Uα = Ur,

and decreases as more and more important directions

disappear from Ur. Consequently, the scattering pre-

served after a projection, Uα, is written as follows

α = 1− tr(UTα S
X
w Uα)

tr(SXw )
(3)

The parameter α takes values within the interval

[0, 1]. When α = 0, then Uα = Ur. For individual val-

ues of 0 < α < 1, different projections are obtained

with dissimilar levels of preserved variability. Figure 2

presents the main subspaces involved in the DCV and

GDCV method.

Once Uα is calculated the generalized common vec-

tors are defined as xjgcv = xj − UαU
T
α xj . Then the

centered generalized common vectors Xcom
c = [x1

gcv −
xcom . . . xcgcv−xcom], with regard to the mean xcom =

(1/c)
∑c
j=1 x

j
gcv, is calculated to compute the final pro-

jection matrix as in the DCV method.

To test a new sample, xtest, we need to project it on

WT (WTxtest) and then the label is allocated according

to the minimum distance between the projected sample

and the generalized discriminative common vectors.

Regarding its computational complexity, GDCV has

an asymptotic cost dominated by O(d2m + d3), when

d ≤ m. In the SSS case, d > m, the computational

complexity is O(dm2 +m3 + dmr).
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Fig. 2: Main subspaces involved in the DCV and GDCV

methods. Ur and Uo span the range and null space of

SXw linked to the eigenvalues λ1 > . . . > λr and λi =

0, i ≥ (r + 1), respectively. Uα spans the restricted

range of SXw according to α.

2.3 KDCV by using Kernel Trick

The KDCV method [4,5] uses nonlinear mapping to

map samples from the original input space Rd to a

feature space Rf of greater dimension where the DCV

method is applied and the samples are expected to be

linearly separable.

Given the nonlinear function φ, the re-projected ver-

sion of the training set X is defined as:

Φ(X) = [φ(x1
1) . . . φ(xm1

1 ) φ(x1
2) . . . φ(x

mj

j ) . . . φ(xmc
c )]

(4)

In this new space, the between-class, the within-

class and the total scatter matrices are defined as SφB ,

SφW and SφT , respectively.

SΦB =

c∑
j=1

mj(x
φ
j − x

φ)(xφj − x
φ)T

= (ΦH − ΦL)(ΦH − ΦL)T (5)

SΦW =

c∑
j=1

mj∑
i=1

(φ(xij)− x
φ
j )(φ(xij)− x

φ
j )T

= (Φ− ΦG)(Φ− ΦG)T (6)

SΦT =

c∑
j=1

mj∑
i=1

(φ(xij)− xφ)(φ(xij)− xφ)T

= (Φ− Φ1m)(Φ− Φ1m)T = SΦW + SΦB (7)

where xφj are the re-projected averages for each jth

class and xφ is the global average of all re-projected

samples in R
f . G = diag[G1, . . . , Gc] ∈ R(m×m) and

H = diag[µ1, . . . , µc] ∈ R
(m×c) are diagonal matri-

ces, where each Gj ∈ R(mj×mj) is a matrix with all

its elements equal to 1/mj , and each µj ∈ R(mj×1) is

a vector with all its elements equal to 1/
√
mj . L =

[l1, . . . , lc] ∈ R(m×c) is a matrix where each lj ∈ R(m×1)

is a vector with all its elements equal to
√
mj/m, and

1m ∈ R(m×m) is a matrix with all its elements equal to

1/m.

KDCV uses the intersection between the null sub-

space of SφW and the range subspace of SφT to represent

classes [4,5]. Therefore, the common vectors are cal-

culated from a first re-mapping on the range space of

SφT (which is nothing more than the application of the

principal component analysis with kernel o KPCA(SφT ):

V ∆V T [22]) followed by a re-mapping onto the null

subspace of SφW , obtaining the nonlinear discriminant

common vectors representing each class. The mathe-

matics properties of the DCV method are transmitted

to the KDCV method, only differing in the mapping of

the samples, as follows:

S̃ΦW = ((Φ− Φ1m)V ∆−1/2)TSΦW (Φ− Φ1m)V ∆−1/2,

= ∆−1/2V T K̃W K̃
T
WV ∆

−1/2. (8)

S̃ΦB = ((Φ− Φ1m)V ∆−1/2)TSΦB(Φ− Φ1m)V ∆−1/2,

= ∆−1/2V T K̃BK̃
T
BV ∆

−1/2. (9)

S̃ΦT = ((Φ− Φ1m)V ∆−1/2)TSΦT (Φ− Φ1m)V ∆−1/2,

= ∆−1/2V TV ∆V TV ∆V TV ∆−1/2 = ∆, (10)

with K̃W = K−KG−1mK+1mKG = (K−1mK)(I−
G) and K̃B = KH − KL − 1mKH + 1mKL = (K −
1mK)(H − L). K is the kernel matrix of the mapped

data K = ΦTΦ. K̃ = K−1mK−K1m+ 1mK1m is the

centered training kernel, and (Φ − Φ1m)V ∆−1/2 is the

transformation matrix that maps the training set into

R(SΦT ).

An EVD of S̃ΦW is then performed to obtain the

null subspace base Ũo, such that EVD(S̃ΦW ) : Ũ Λ̃ŨT =

[Ũr Ũo] diag(Λ̃r, Λ̃o) [Ũr Ũo]
T . Ũo are the ro normal-

ized eigenvectors associated to the null eigenvalues in

Λ̃, such that

ŨTo S̃ΦB Ũo = ŨTo S̃ΦT Ũo. (11)

The re-mapping matrix W is calculated as: W =

(Φ−Φ1M )V ∆−1/2Ũo, and the nonlinear discriminative

common vectors are obtained by: xjkdcv = WTxφj =

(V ∆−1/2Ũo)
T K̃.

Regarding its computational complexity, the asymp-

totic cost of the KDCV-KT is dominated by O(9m3).

3 Kernel Generalized Discriminative Common

Vectors

In this section we present the main two contributions

of this paper, which are the extension of the GDCV

for non linear cases using the Kernel Trick first, and by

means of the Nonlinear Projection Trick later.
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3.1 KGDCV by applying the Kernel Trick

Equation (11) is not true for 0 < α < 1 values, since

[Ũo Ũr′ ]
T S̃ΦB [Ũo Ũr′ ] 6= [Ũo Ũr′ ]

T S̃ΦT [Ũo Ũr′ ]. For

convenience, let us use Ũ1−α = [Ũo Ũr′ ] to denote the

extended null space, similarly to Ũα was used to denote

the restricted range space. Ũ1−α spans the null space

with the normalized eigenvectors Ũo of S̃ΦW associated

to the null eigenvalues plus the normalized eigenvectors

Ũr′ associated to the smallest r’ non-zero eigenvalues.

In this case the dimension of W will not be limited to

(c− 1) and it will grow rapidly with α.

To avoid this rapid grow and limit the final dimen-

sion to (c − 1), the ŨT1−α S̃φB Ũ1−α matrix is eigen-

decomposed in Y ∆̃Y T , as in [4]. This is equivalent to

consider only the average vectors of each class xφj in the

high-dimensional space defined by the kernel φ. In this

way, the final re-mapping matrix is defined, similarly to

KDCV, as:

W = (Φ− Φ1M )V ∆−1/2Ũ1−αY. (12)

When new samples need to be re-projected in the
subspace, as the testing samples xtest in a classification
pipeline, the kernel matrix Ktest is first calculated with
entries k(xij , xtest) =< φ(xij), φ(xtest) >. Then, the test
sample can be re-projected as:

xφtest = (V ∆−1/2Ũ1−αY )T (Ktest−K1′m−1mK
test+1mK1′m)

(13)

where 1′m = (1/m)(m×p).

Conventionally, if a nearest neighbor classifier is ap-

plied, the test label is allocated from the minimum dis-

tance between the re-projected sample xφtest and the
nonlinear generalized discriminative common vectors

xjkgdcv:

labeltest = arg min
j∈[1,c]

‖xφtest − x
j
kgdcv‖ (14)

Alternatively, all training samples xij can be re-projected

to take into account the variability of each class in the

new space, and then the classifier is used.

The KGDCV algorithm is presented in Algorithm 1.

The asymptotic cost of the KGDCV-KT is domi-

nated by O(9m3), like in the KDCV method.

3.2 KGDCV by applying the Nonlinear Projection

Trick

While KGDCV-KT allows both addressing non-linearly

separable spaces and dealing with the SSS singularity,

Algorithm 1 KGDCV Algorithm by using Kernel Trick

Parameter: α, 0 ≤ α < 1
Input: X ∈ Rd×m, m =

∑c
j=1mj

Output: W ∈ Rd×(c−1)

TRAINING
1. Compute the kernel matrix K = ΦTΦ (usually a ra-

dial kernel) with entries k(xi, xj) =< φ(xi), φ(xj) >=

exp
(
− ‖xi−xj‖

2

2σ2

)
.

2. Center the training kernel K̃ = K−1mK−K1m+1mK1m.

3. Calculate the normalized eigenvectors associated with the
nonzero eigenvalues of K̃, such that EVD(K̃): V ∆V T ∈
R

(m×m).

4. Calculated S̃ΦW = ∆−1/2V T K̃W K̃T
WV ∆−1/2.

5. Calculated Ũ1−α from EVD(S̃ΦW ).

6. Calculate Y from EVD(ŨT1−αS̃
φ
BŨ1−α): Y ∆̃Y T .

7. Calculate the final re-mapping matrix as W = (Φ −
Φ1m)V ∆−1/2Ũ1−αY .

8. Obtain the nonlinear generalized discriminative common

vectors as xjkgdcv = (V ∆−1/2Ũ1−αY )T K̃j .

TESTING
Given a new testing sample xtest,

9. Compute the kernel matrix Ktest(xij , xtest) =

exp

(
−
‖xij−xtest‖

2

2σ2

)
.

10. Center the testing kernel K̃test = Ktest−K1′m−1mKtest+
1mK1′m.

11. Map the testing sample as xφtest = (V ∆−1/2Ũ1−αY )T K̃test

12. Predict the classification label, normally as:

labeltest = arg min
j∈[1,c]

‖xφtest − x
j
kgdcv‖.

it also implies an increase in the computational comple-

xity regarding the linear case. As alternative, we pro-

pose a second KGDCV method that applies the Nonlin-

ear Projection Trick (NPT) [16] to compute the same

feature space in a more efficient manner. Thus, our

KGDCV explicitly maps the input space into the re-

duced kernel feature space. This is achieved by the

eigenvalue decomposition of the kernel matrix that al-

lows deriving an exact coordinates of the mapped input

data.

N. Kwak [16] demonstrated that applying a machine

learning algorithm to the re-projected data on a kernel

Hilbert space Φ(X), whose coordinates Xo are obtained

using the NPT, is equivalent to apply a kernel version of

the machine learning algorithm to the original data in

the input space. Therefore, applying the linear method

to Xo is equivalent to apply the kernel method to X,

GDCV (Xo) ≡ KGDCV (X).

Let Γ be an r-dimensional subspace of the feature

space formed by the mapped training samples Φ(X).

The columns of β = Φ(X)V ∆ constitute an orthonor-

mal base of Γ , where V and ∆ are obtained by the

eigendecomposition of K(X) =< Φ(X), Φ(X) >=

V ∆V T , such that the exact coordinate Xo of Φ(X) pro-
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jected onto Γ is obtained by the inner product of the β

and Φ(X) as:

Xo =< β, Φ(X) >= ∆−1/2V TK(X) (15)

The full KGDCV-NPT algorithm is described in Algo-

rithm 2.

Algorithm 2 KGDCV Algorithm by using Nonlinear Projec-

tion Trick

Parameter: α, 0 ≤ α < 1
Input: X ∈ Rd×m, m =

∑c
j=1mj

Output: W ∈ Rd×(c−1), ∆ ∈ Rr×r, V ∈ Rm×r

TRAINING
1. Compute the kernel matrix K = ΦTΦ (usually a ra-

dial kernel) with entries k(xi, xj) =< φ(xi), φ(xj) >=

exp
(
− ‖xi−xj‖

2

2σ2

)
.

2. Center the training kernel K̃ = K−1mK−K1m+1mK1m.
3. Calculate the normalized eigenvectors associated with the

nonzero eigenvalues of K̃, such that EVD(K̃): V ∆V T ∈
R

(m×m).
4. Calculate the coordinates Xo = ∆−1/2V T K̃.

5. Calculate GDCV(Xo): (W,xjgcv).

6. Obtain the nonlinear generalized discriminative common
vectors as xjkgdcv = WT xjgcv.

TESTING
Given a new testing sample xtest,

7. Compute the kernel matrix Ktest(xij , xtest) =

exp

(
−
‖xij−xtest‖

2

2σ2

)
.

8. Center the testing kernel K̃test = Ktest−K1′m−1mKtest+
1mK1′m.

9. Calculate the coordinate Xotest = ∆−1/2V T K̃test

10. Compute the generalized discriminant features as xφtest =
WTXotest.

11. Predict the classification label, normally as:

labeltest = arg min
j∈[1,c]

‖xφtest − x
j
kgdcv‖.

The asymptotic cost of the KGDCV-NPT is dom-

inated by O(5m3), from the eigendecomposition of K̃

and the GDCV (Xo).

4 Experiments and Results

In this section we present the experimental results car-

ried on to validate our proposed approaches.

4.1 Datasets and Experimental setup

In our experimental setup, a simple 1-Nearest Neigh-

bors classifier is employed as classifier, using the Eu-

clidean distance between the trained nonlinear genera-

lized discriminative common vectors and the projected

test samples, as described in eq. 14. The simplicity of

the classifier is justified for our aim to demonstrate the

accuracy and approximation of our method to obtain

a re-mapping into another space where the relevant in-

formation is easily separable into the different classes.

This choice is also supported by the literature [16,25,4,

5] as a common practice. To validate the advantages of

our KGDCV approaches, we have selected four publicly

available image classification datasets containing faces,

objects and handwritten digits for training and testing.

The table in Figure 3 shows the main characteristics of

the datasets.

  

  

Dataset c mj Variability type
ALL-NG 95 50 Faces - pose & light & noise
COIL-100 100 72 Objects - pose
NIST 10 100 handwritten digits - different writers
USPS 10 100 handwritten digits - different writers

Fig. 3: Datasets used in our evaluation along with their

corresponding details. c is the number of classes. mj is

the number of samples per class.

ALL-NG is composed of a random selection of 10

face samples per class from the facial databases AR

Face [18], ORL [20], Yale [12] and UMIST [26], totaling
95 classes. Images were resized to 40 × 40 pixels and

they include changes of expression, lighting and pose.

Gaussian noise with 4 different variance levels -0.02,

0.04, 0.06 and 0.08- was added to the 10 standardized

original images of each subject, generating a total of 50

samples per class.

COIL-100 [19] is a database comprising 100 diffe-

rent classes of objects. Each class contains 72 grayscale

images of the same object from poses 0 to 355 with a

pose interval of 5 degrees. Images have a resolution of

128× 128.

NIST is a database of gray-scale handwritten digits

from 0 to 9. Image resolution is 32× 32 This is derived

from the NIST32 database available in prtools [13]. For

each class, 100 samples were randomly selected from

the total like in [10]. The original binary images were

converted to gray levels using the distance transforma-

tion [1,15].

USPS dataset [9] is a numerical dataset collected by

scanning handwritten digits from envelopes by the U.S.
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Postal Service. The original scanned digits are binary

and have different sizes and orientations. The images

were converted to gray-scale, as in NIST, and resized

to 16× 16.

As kernel function, a Gaussian radial kernel function

is used in all experiments as in [27,5,3,16,29]. In order

to prevent any overfitting to our particular method on

the experimentation, the kernel’s proximity parameter

was varied in the range of 10 to 200 and optimised for

the KDCV method before applying our approach. The

empirical values obtained were σ = 65 for ALL-NG,

σ = 170 for COIL-100, σ = 25 to NIST and σ = 20 to

USPS.

To validate the discriminative properties and com-

pare the computational efficiency of the methods, three

experiments are considered:

1. KGDCV performance analysis over both the

training set size and the α value: the accuracy

rate for KGDCV is computed as a function of both

parameters, the training set size and the α value.

2. Comparative analysis in the SSS vicinity over

α: Our KGDCV-KT and KGDCV-NPT are com-

pared against the linear methods DCV and GDCV

and non-linear KDCV, both in terms of CPU time

and classification accuracy. A small fixed training

set is chosen so that the generalization ability of

the method can be evaluated in the vicinity of the

SSS problem, SSS singularity and low dimensional

null spaces. Specifically, mj = 13 per class is chosen

for all datasets. Performance is analysed as a func-

tion of the variance added to the final subspace α,

decreasing from 0 to 0.5 in steps of 0.05.

3. Overall comparative analysis over the train-

ing size: Our KGDCV-KT and KGDCV-NPT are

compared against the linear method GDCV and state-

of-art non-linear methods KDCV, KICA [17],

KDAQR [27] and KDASR [3], both in terms of CPU

time and classification accuracy. To validate the per-

formance in all possible cases, the training set was

varied from 3 samples per class up to the maxi-

mum. α value was chosen empirically from the previ-

ous experiment as a good compromise between time

and accuracy (αALL−NG = 0.1, αCOIL−100 = 0.05,

αNIST = 0.15, and αUSPS = 0.05).

Training set is composed by the 70% of the samples

of each class, and the remaining 30% is used as test set.

In the last two scenarios, cross validation is applied as

evaluation protocol to avoid bias to a particular train-

ing/testing split, where the experiment is run 10 times

with different random training/testing sample choices.

Graphs show the average result over the iterations as

well as dispersion bars. All algorithms have been run on

a computer with an Intel(R) Core(TM) i7-4790 CPU @

3.60GHz, 3601 Mhz, and 32-GB RAM.

4.2 Results

In the following we present the results for the three

experiments.

4.2.1 KGDCV performance analysis over both the

training set size and the α value

Figure 4 presents the accuracy rate as a function of

the number of training samples per class (x-axis) and

the variance added (α) (y-axis). We can observe that,

as expected in any classifier, the higher the number of

training samples is, the better the accuracy rate of both

KDCV (α = 0) and KGDCV (0 < α < 1) results. Both

KGDCV-KT and KGDCV-NPT provided identical ac-

curacy results. In addition, for a given number of train-

ing samples, the accuracy of KGDCV does not vary

significantly when modifying the variance added to the

final subspace. This gives and additional advantage to

our methodology since it makes the parameter α easy

to tune.

4.2.2 Comparative analysis in the SSS vicinity over α

Figure 5 depicts the comparison in accuracy for KGDCV

-KT, KGDCV-NPT, DCV, GDCV and KDCV in all

datasets. Both linear DCV and non-linear KDCV are

presented by a single dot, since α = 0 in these methods.

Our KGDCV achieved the best performance of all me-

thods in all cases, with both KGDCV-KT and KGDCV-

NPT approaches given the exactly same accuracy value.

From the results, it is observed, that non-linear kernel

methods present better results than linear ones (KDCV

> DCV, KGDCV > DCV). It can also be noticed that

the better generalisation properties from the extended

null space in GDCV and KGDCV is reflected on an

improvement in accuracy in most datasets (GDCV >

DCV, KGDCV ≥ KDCV), although this effect is more

clearly exhibit in the linear versions for having more

space for improving. As a result, we can conclude that

KGDCV outperforms or obtain the same results than

KDCV, DCV and GDCV. Finally, accuracy does not

vary significantly with α, which makes its tuning easy

and less sensitive than in GDCV.

Regarding the CPU time, Figure 6 shows several in-

teresting observations. In spite of their good discrimi-

native performance, KDCV and KGDCV-KT exhibit

the largest computational time due to the Kernel Trick
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Fig. 4: Discriminative performance for KGDCV (0 < α < 1) and KDCV (α = 0) regarding the training set size

and the α value.

implementation. However, our proposed KGDCV-NPT

shows a drastic reduction on CPU time regarding the

other non-linear methods, as expected from the discus-

sion on computational complexity in sections 3.1 and

3.2, due to the different but more efficient computation

of the re-mapping matrix. KGDCV-NPT also achieves

a similar or even lower cost than linear methods as

DCV and GDCV. Although this may seems contra-

intuitive since KGDCV applies a GDCV as part of its

algorithm -see Algorthm 2, step 5-, this is explained by

the smaller size of the matrix Xo comparing to X. In

general, non-generalized approaches are more expensive

than the generalized ones (DCV > GDCV, KDCV >

KGDCV) since the generalized approached reduces the

dimensions of the range space involved in the calcula-

tions. Similarly to the accuracy analysis, the parameter

α has a negligible effect on the CPU time, without any

negative influence.

As conclusion of this experiment, our proposed

KGDCV - NPT shows the best discriminative perfor-

mance in terms of accuracy with the lowest compu-

tational time among all tested methods. It achieves a

considerable computational gain without compromising

the accuracy of the model regarding the KT approach.

4.2.3 Overall comparative analysis over the training

size

Here we validate the accuracy rate and the CPU time

of the both approaches, KGDCV by KT and NPT, re-

garding to the linear GDCV, KICA [17], KDAQR [27]

and KDASR [3] methods, to a fixed α and an increas-

ing training set size. The values of α are 0.9, 0.95, 0.95

and 0.85 to the ALL-NG, COIL-40/30, USPS and to

NIST, respectively. In this final experiment, our pro-

posed KGDCV is compared against other state-of-art
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Fig. 5: Discriminative performance comparison of accuracy over α between KGDCV-KT, KGDCV-NPT, DCV,

GDCV and KDCV.

non-linear subspace learning methods based on diffe-

rent reductions. Linear GDCV is added as baseline to

show the relative improvement achieved by non-linear

techniques. Accuracy rates and CPU times of this com-

parison for all the four datasets are presented in Figu-

res 7 and 8, respectively. The training set size is varied

from the minimum possible to the maximum available

in all datasets in order to validate the comparison under

the most possible cases.

From these results, similar conclusions can be ex-

tracted as in the previous experiment. First, KGDCV

achieves the best accuracy of all methods in the com-

parison for all datasets and training set sizes. Further-

more, the variant KGDCV-NPT also achieves the low-

est computational cost of all non-linear methods. This

difference is bigger as more training samples are avail-

able. As in Figure 6, KGDCV-NPT computational cost

is also similar or lower than the linear GDCV, but only

while d > m. For this reason, ALL-NG and USPS

dataset, the biggest ones in number of samples with

the smallest dimensionalities, exhibit a lower computa-

tion cost for GDCV from a certain amount of training

samples onwards, due to the change in the relationship

between d and m. KDASR is the second best method

in the comparison both in time and accuracy, but the

difference with KGDCV-NPT is clear. All non-linear

approaches overperform GDCV in accuracy, but at the

expense of computational cost, with the exception of

our efficient KGDCV-NPT implementation.
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Fig. 6: Comparison of the CPU training time over α between KGDCV-KT, KGDCV-NPT, DCV, GDCV and

KDCV.

5 Conclusions

In this paper, our method Kernel Generalized Discri-

minative Common Vectors (KGDCV) was presented as

an approach to non-linear discriminant feature extrac-

tion. Our method combines the advantages of KDCV

for non-linear spaces with the advantages of GDCV for

better generalisation properties without restrictions on

the training set size and lower computational comple-

xity. Thus, KGDCV can be understood as a new exten-

sion of GDCV with kernels or as a novel generalization

of KDCV.

Two different approaches to KGDCV were proposed,

one based on the kernel trick (KT) and a second one

based on the nonlinear projection trick (NPT) for higher

efficiency.

Our method was validated on four different image

datasets containing faces, objects and handwritten dig-

its and compared against non-linear state-of-art me-

thods as well as all the methods from which KGDCV is

derived. In all tested cases, KGDCV approaches were

the most discriminant methods in terms of accuracy.

Moreover, our KGDCV-NPT showed simultaneously the

best discriminative performance and the lowest compu-

tational time among all tested methods.
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Fig. 7: Discriminative performance of accuracy over the training set size between KGDCV-KT, KGDCV-NPT,

GDCV, KICA [17], KDAQR [27] and KDASR [3].

Appendix

A Table 1 presents the list of acronyms of the

document.
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