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Heras · Oriol Ramos Terrades

Received: date / Accepted: date

Abstract Relatively little research has been done on the topic of patent image
retrieval and in general in most of the approaches the retrieval is performed
in terms of a similarity measure between the query image and the images in
the corpus. However, systems aimed at overcoming the semantic gap between
the visual description of patent images and their conveyed concepts would
be very helpful for patent professionals. In this paper we present a flowchart
recognition method aimed at achieving a structured representation of flowchart
images that can be further queried semantically. The proposed method was
submitted to the CLEF-IP 2012 flowchart recognition task. We report the
obtained results on this dataset.

Keywords Flowchart Recognition · Patent Documents · Text/Graphics
Separation · Raster-to-Vector Conversion · Symbol Recognition.

1 Introduction

Information retrieval in the intellectual property domain has been a major
research area within the Information Retrieval field for many years. Although
being an already mature research topic, it is far from being a solved problem.
Patent professionals need advanced search tools in order to assess the viability
of a given invention with respect to the state of the art. Information retrieval
tools such as cross-lingual information retrieval, document categorization or
query expansion are often used to provide a thorough analysis of patent ap-
plications. However, not all the information in a patent document is conveyed
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by textual elements. This is usually the case in the chemical, pharmaceuti-
cal or electronics fields in which the core information of the patent invention
is depicted by means of a line-drawing instead of being explicitly written in
textual format. Discussion papers such as (Adams, 2005) and (List, 2007),
already pointed out the interest of image search in patent documents.

However, as surveyed in (Hanbury et al, 2011) and (Bhatti and Hanbury,
2012), relatively little research has been done on the topic of patent image
retrieval. In general most of the published approaches dealing with patent im-
age retrieval follow the Content-Based Image Retrieval (CBIR) paradigm (Lew
et al, 2006), in which the retrieval is performed in terms of a similarity measure
between the query image and the images in the corpus.

For example in (Huet et al, 2001), patent drawings are represented using
attributed graphs and the retrieval task is then casted as a graph similarity
computation. Methods like (Codina et al, 2008; Vrochidis et al, 2010, 2012)
and (Sidiropoulos et al, 2011) base the image description on histograms en-
coding the centroid positions at different levels. Such descriptors can be un-
derstood as a special case of a quad-tree (Samet and Webber, 1985) encoding
of the image under analysis. The retrieval part just relies on the Euclidean
distance between query and corpus descriptors. In (Tiwari and Bansal, 2004),
the PATSEEK framework is presented in which patent drawings are described
by means of edge orientation autocorrelograms (Mahmoudi et al, 2003).

In order to promote comparability among methods and easily track the
progress in the field of information retrieval in the intellectual property do-
main, within the CLEF initiative a track specialized on Intellectual Property
(IP) retrieval was first organized in 2009. Until 2011, the IP track served
as a benchmarking activity on prior art retrieval focusing only on textual
patent documents. However, in 2011 two image-based tasks were added (Piroi
et al, 2011). One devoted to find patent documents relevant to a given patent
document which contained images and another aimed at categorizing patent
images into predefined categories of images (such as graphs, flowcharts, draw-
ings, etc.). In order to tackle the classification task the participant meth-
ods (Mörzinger et al, 2011; Csurka et al, 2011) holistically described the indi-
vidual images and such descriptors were then fed to a supervised classifier.

However, the CBIR paradigm might not be the most suitable tool to pro-
vide an image search in the intellectual property domain. In order to assess
whether an invention is new or has already been submitted, the patent pro-
fessional should look for images that depict the same concept (Vrochidis et al,
2012) instead of images that look visually similar to the query. That is, image
retrieval methods should be able to bridge the semantic gap between the vi-
sual appearance of the images and the semantic meaning they convey (Lupu
et al, 2012). Although a large variety of different images can be found within
patent documents (chemical structures, math formulas, device designs, trade-
marks, etc.), we will focus on line-drawings of flowcharts, since they carry an
important semantic meaning and it would be beneficial to “translate” such
graphical information into a structured format that will allow to browse the
contained information.



Flowchart Recognition for Non-Textual Information Retrieval in Patent Search 3

Conversely, within the pattern recognition community, and specifically in
the graphics recognition field, the task of “understanding” line drawings in
order to obtain a structured representation of graphical images has been stud-
ied for more than thirty years now. Early works such as (Bunke, 1982) or
(Lin et al, 1985) were already focused on the recognition of line drawings
for further automatic process. This research line continued until the mid-
ninetieths (Blostein, 1996; Yu et al, 1997) when most of the research efforts
were re-focused on the treatment of on-line sketched drawings (Szwoch, 2007;
Yuan et al, 2008) although some recent research in those lines can still be
found (Vasudevan et al, 2008). To our best knowledge, no commercial patent
retrieval system uses image understanding techniques for the retrieval of non-
textual information in patent documents. The only efforts in that direction
come from the Image Mining for Patent Exploration (IMPEx) Project 1

which its main objective is the extraction of semantic information from patent
images.

In CLEF-IP 2012 (Piroi et al, 2012) a new image-based task was proposed.
The flowchart recognition task deals with the interpretation of flowchart line-
drawing images. The participants were asked to extract as much structural
information as possible in these images and return it in a predefined textual
format for further processing for the purpose of patent search. Three different
institutions participated in such task (Mörzinger et al, 2012; Rusiñol et al,
2012; Thean et al, 2012).

The state of the art in graphical document understanding presents an im-
portant flaw, most of the methods (e.g. (Bunke, 1982; Lin et al, 1985; Lamiroy
et al, 2001; Valveny and Lamiroy, 2002)) were just evaluated qualitatively, thus
making very difficult to actually assess the methods’ performances. Initiatives
such as the CLEF-IP 2012 flowchart recognition task are really beneficial for
the community since they allow to track the progress and to fairly compare
different methods under the same conditions. This paper is an extended ver-
sion of our previous working notes paper (Rusiñol et al, 2012) that introduced
our proposed flowchart recognition methodology. Our method follows the ideas
sketched in (Lamiroy et al, 2001) and (Valveny and Lamiroy, 2002) in which
the authors proposed a framework allowing to automatically generate a struc-
tured output file (XML-like) from the analysis of input graphical documents.
Specifically, we have extended the method details in order to make the paper
more self-contained. We have also included a quantitative evaluation section
in which we compare the results of all the participant’s methods in CLEF-IP
2012. This comparison with (Mörzinger et al, 2012) and (Thean et al, 2012)
shows how our contribution outperforms the other participant’s methods in
both the ability of detecting the flowchart structure and the ability of auto-
matically transcribe the text within the flowchart. Finally, an implementation2

of our baseline system has been made available in order to allow the interested
readers to test and study our approach.

1 http://www.joanneum.at/?id=3922
2 Code available at: http://www.cvc.uab.es/~marcal/demos/flowchart.html
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Fig. 1 System’s architecture overview.

The rest of this paper has been organized as follows. Section 2 overviews
the proposed architecture and details each of the modules that comprises the
system’s pipeline. In section 3 we present and analyze the obtained results and
finally in section 4 we draw our concluding remarks.

2 Architecture Description

We have designed the architecture of our recognition system as follows. As we
can see in Fig. 1, we structure the system pipeline in separate modules dealing
with the different steps of the flowchart recognition problem.

Many of the methods used in each step require a number of parameters to
be fixed beforehand and depend on the quality of flowchart image in terms of
image resolution, noise, etc. and also whether images are black&white, gray
scale or color. In this section we provide a rough overview of methods and
meaning of the parameters required while we provide the actual values used
on the dataset in the section of experimental results, section 3.

The input of the system is an already segmented flowchart image that
appeared in a patent document, as the one shown in Fig 2a). In a first step,
we apply a text/graphic separation module aimed to separate the textual
elements from the graphical ones. We apply an OCR engine on the text layer
while we analyze the nodes and edges on the graphical layer. Then, for the
node and edge segmentation, we apply two different strategies resulting in
two alternative segmentation modules: a pixel-based and a vectorial-based
approach. The vectorial-based approach requires a conversion module that
transforms the raw pixel image into a vectorial representation. By submitting
two different runs we wanted to assess the strengths and weaknesses of using
two different primitives, pixels and vectors, for node and edge segmentation.

The output of the node segmentation module is a list of bounding-boxes
of the detected nodes. These locations are subsequently fed to the recognizer
module which is in charge of establishing the type of node (e.g. circle, oval,
rectangle, etc.). Herein, we have used two different node descriptors, namely a
descriptor based on geometric moments (Zhang and Lu, 2002) and the Blurred
Shape Model (BSM) descriptor (Escalera et al, 2009), resulting in two alter-
natives for the node recognition module. The modules analyzing edges are
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devoted to assess which nodes are connected and classify the edges in terms
of their style.

Finally and taking together the results of text, node and edge recognition,
we apply a flowchart structure inference module in order to correct certain
syntactic errors and build the final graph structure representing the flowchart.

The combination of the two alternative node and edge segmentation mod-
ules with the two alternative node recognition modules results to four system
variants producing the four submitted runs to the CLEF-IP 2012 flowchart
recognition task summarized in Table 1.

Table 1 Submitted runs produced by the four different system variants.

Id Run Segmentation Descriptor

R1 CVC-UAB.BSM Pixel-based BSM
R2 CVC-UAB.GMOMENTS Pixel-based Geometric moments
R3 CVC-UAB.VECTORIALBSM Vectorial-based BSM
R4 CVC-UAB.VECTORIALGMOMENTS Vectorial-based Geometric moments

Let us describe in the following sections each of these specific modules.

2.1 Segmentation modules

The segmentation module is composed of the following steps applied sequen-
tially, one after the other: text/graphics separation, raster-to-vector conversion,
node segmentation and edge segmentation. In addition, for node and edge seg-
mentation modules, we have analyzed two different alternatives depending on
the primitives we use to segment nodes and edges from the flowchart images.
On the one hand, we have proposed segmentation modules directly working
with the raw pixels from the graphical layer. On the other hand, we have pro-
posed a segmentation strategy working on the vectorial representation of the
graphical layer.

Text/graphics separation. We have applied the text/graphics separa-
tion algorithm proposed by (Tombre et al, 2002) which yields acceptable re-
sults in a variety of mixed-type documents. This approach is based on the
well-known approach of (Fletcher and Kasturi, 1988), which in turn is based
on the analysis of connected components (CCs). A CC is a maximal set of
spatially connected pixels that share a common property (herein, the same
color). Although Tombre’s method might not be the best one (it is really hard
to assess which is the best text/graphics separation technique in a general
sense), both Fletcher and Tombre’s methods are used as de-facto standards
within the document analysis community since they have been proven to be
stable and generic in different scenarios (Lladós and Rusiñol, 2013).

The applied text/graphics separation module proceeds as follows: Given an
input image, structural features such as height and width ratios are computed
from CCs. Four thresholds determine whether a CC corresponds to a graphical
element or a textual element. Moreover, the CCs that the system is not certain
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a) b)

c) d)

Fig. 2 Example of the text/graphics separation module. a) Original image, b) graphical
layer, c) textual layer, d) undetermined layer.

about, are assigned to an undetermined layer via a rejection criterion. The
output of the module is an image consisting of three separate layers, namely
the textual, the graphical and the undetermined one.

Two of these four thresholds depend on geometric properties of CCs. The
first threshold T1 sets a maximum size threshold for bounding boxes of CCs.
More precisely, let Amp and Aavg respectively be the most populated CC area
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and the CC average area, then T1 = nmax{Amp, Aavg} , where n is a pa-
rameter fixed beforehand. The second threshold T2 is used to fix a maximum
elongation threshold of bounding boxes. Thus, CCs with a ratio height

width in the
range [ 1

T2
, T2] and both magnitudes height and width below

√
T1 are consid-

ered as text. Then, the algorithm computed the best enclosing rectangle of
each CC classified as text and using two more thresholds to reclassify each
component in the third layer if the algorithm consider that the CC is “small
and elongated” component. These two new threshold concerns the density of
the CC, with respect to the area of the best enclosing rectangle and the elon-
gation of this rectangle. We can see an example of the results obtained by this
text/graphics separation module in Fig. 2.

Raster-to-vector conversion. Some of the submitted runs are based on
the analysis of vectorial data instead of working on the raw image domain.
Thus we need a module that converts the raster image into a vectorial rep-
resentation. We have used the raster-to-vector conversion method described
in (Tombre et al, 2000). This algorithm first computes the skeleton of the
image by means of a distance transform. Chains of pixels are then polyg-
onally approximated by using the algorithm proposed in (Rosin and West,
1989) which is based on a recursive split-and-merge technique. We can see an
example of the obtained results after the raster-to-vector conversion in Fig. 3.

Node and edge segmentation. The node segmentation module takes
as input the graphical and textual layers obtained through the text/graphics
separation module and outputs a list of bounding-boxes where the nodes are
found. Thus, we have first segmented the symbolic nodes (i.e. oval, rectangle,
double-rectangles, parallelogram, diamond circle and cylinder) and also the
textual nodes (no-box nodes), corresponding to text which is not enclosed by
any graphical entity.

In the current system CCs of interest are the ones corresponding to the
white area inside the nodes and the main problem is to discriminate those from
connected components corresponding to the background. After a preliminary
step where very small and very large CCs are filtered, the remaining CCs
are labeled as node candidates. However, not all the remaining components
correspond to nodes since the white areas produced by loops formed by edges
connecting nodes are also detected as candidates. In order to discriminate
the real node components from the rest, we have used a couple of structural
features:

– Solidity: computed as the ratio between the number of pixels in the CCs
and the area of the convex hull of the CCs. Since nodes tend to be convex,
objects below a solidity threshold are rejected. In our implementation, the
solidity threshold was experimentally set to tsol = 0.89.

– Vertical symmetry: computed as the ratio between the amount of pixels
in the right and the left part of the CCs. Since nodes tend to be vertically
symmetric, objects below a symmetry threshold are rejected. In our imple-
mentation, the symmetry threshold was experimentally set to tsym = 0.78.
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a) b)

Fig. 3 Example of the raster-to-vector conversion module. a) Original image, b) vectorial
representation applied to the graphical layer.

Distinctively from the pixel-based segmentation approach, the vectorial-
based node segmentation takes as input the vectorial representation of the
images obtained after the raster-to-vector conversion, see Fig. 3 b). It is based
on the exploration of loops in the planar graphs obtained from the vectorial im-
ages. In these graphs, nodes are the vectorial lines and edges are the connection
points between these lines. The loop extraction process is driven by the imple-
mentation of the optimal algorithm for finding regions in a planar graph (Jiang
and Bunke, 1993). As in the pixel-based segmentation method, we have also ap-
plied the solidity and vertical symmetry features introduced above to rule out
inconsistent node candidate instances. Although both approaches are rather
similar, in the sense that they both look at “closed things”, the difference is
the input data they process, either the raw pixels or extracted vectors. When
extracting such vectors, we decided not to use any pre-processing step at pixel
level, the raster-to-vector conversion has been applied to the raw pixels from
the graphical layer. Even the smallest gap in nodes or edges provokes the
loose of the connectivity between loops and thus, that certain loop structures
are not correctly retrieved. To overcome this issue, well-aligned vectors with
small gaps are connected. Nevertheless, in our implementation some of those
small gaps are still not correctly detected. In contrast, in the pixel-based ap-
proaches we applied a pre-processing step before the CCs analysis devoted to
fill such small gaps by simply performing an opening operation with a linear
structuring element.

The no-box nodes are extracted by analyzing the textual layer. We have
removed text regions falling within detected nodes. Then, no-box nodes are
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the reminding CCs that have an edge that links them to a recognized node.
Otherwise, text block outside nodes are disregarded or considered to be the
title of the drawing if they are located in the upper part of the drawing. Those
CCs are grouped together in terms of proximity by applying a mathematical
morphology operations. Computing a closing operation with a rectangular
structural element of size 25 × 100. We can see an example of the final node
segmentation output in Fig. 4 b).

Finally, we have done edge segmentation in a similar fashion in both the
pixel-based and the vectorial-based approaches. Candidate edges are the CCs
obtained from the graphical layer after removing from it the detected nodes.
We can see an example in Fig. 4 c).

2.2 Recognition modules

Modules devoted to recognition tasks take as input the result of applying
segmentation modules. Three different modules have been developed, namely
text recognition, edge recognition and node recognition.

Text recognition. The module dealing with text recognition receives as
input the textual layer obtained by the text/graphics separation module and
the bounding-boxes arisen from the node segmentation module. The content
of each bounding-box is processed by the commercial OCR from ABBYY3.
No further post-processing steps are applied.

Node and edge recognition. We have developed two different approaches
to perform node recognition. For both versions, we have used a nearest neigh-
bor classifier built on a training dataset (Duda et al, 2001). Thus, the main
difference between these two methods is the shape descriptor used in each
version of the node recognition module.

In general, pattern recognition systems usually require shape descriptors
invariant to similarity transforms (scale, translation, rotation) and even affine
transforms. Therefore, many kinds of shape descriptors for graphics recogni-
tions tasks, invariant to such transforms, have been proposed over the last
decades (Zhang and Lu, 2004). However, in the context of flowchart recogni-
tion, the shape descriptors used to recognize the type of nodes just need to be
invariant to translation and scale, while a lack of invariance to other transforms
is actually beneficial as it results to increased discrimination capacities.

From the pool of shape descriptors, invariant to scale and translation but
not to rotation and other affine transforms, we have selected a descriptor based
on geometric moments (Zhang and Lu, 2002) and the Blurred Shape Model
(BSM) descriptor (Escalera et al, 2009). Both descriptors are easy and fast to
compute on node shape images. In addition, both descriptors have proven to
perform reasonably well in pattern recognition problems with a low number
of classes (type of nodes).

3 ABBYY Finereader Engine 10: http://www.abbyy.com/ocr_sdk/
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a) b)

c)

Fig. 4 Example of the node and edge segmentation modules. a) Original image, b) node
layer, c) edge layer.

– Geometric moments have been widely used as shape descriptors since
lower order moments represent certain well known fundamental geometric
properties of the underlying image functions. We have used the geometric
moments up to third order as a feature vector. The central (p+ q)-th order
moment for a digital image I(x, y) is expressed by
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µpq =
∑
x,y

(x− x̄)p(y − ȳ)qI(x, y) (1)

The use of the centroid (x̄, ȳ) allow the descriptor to be invariant to trans-
lation. A normalization by the object area is used to achieve invariance to
scale.

ηpq =
µpq
µγ00

where γ =
p+ q

2
+ 1 (2)

– The BSM descriptor was originally created to perform handwritten musi-
cal score recognition but it has also been applied to other related document
analysis with different degrees of success (Escalera et al, 2009). The BSM
descriptor is a zoning-based descriptor. Shapes are divided into a 15 × 15
regular grid. Then, the area and the center of gravity are computed for each
cell. The final BSM descriptor is constructed by weighting the areas com-
puted by the inverse of distances between two gravity centers of adjacent
cells. This weighted average is performed in order to achieve robustness to
local variations of the shape under analysis. A normalization by the object
area is used in order to achieve invariance to scale.

Finally, the step dealing with edge recognition only have to distinguish
between directed and undirected edges. A simple analysis of the width of the
edge stroke is enough to discriminate between these two classes of edges.

2.3 Flowchart Structure Inference

Once we have identified all the elements of a flowchart, we have to infer
from the different relationships among elements which is the structure of the
flowchart. More specifically, we have to assess which nodes are connected by
an edge. Therefore, we have pair-wisely selected all the detected nodes and
subsequently analyzed whether any element of the edge layer provokes that
those two disjoint nodes merge into a single element. If this happens, then the
two nodes are linked through this edge in the delivered graph structure.

Since node linking strongly depends on the extraction of CCs, the proposed
system fails at detecting the dotted edges. Also, the proposed system tends to
fail if the edge is broken by some text.

The final graph is syntactically analyzed to detected point nodes. When
we find three or more nodes that are connected through exactly the same
edge element, we add a new intermediate node of type point. We repeat this
procedure up to there are no node junctions with cardinality higher than two.

3 Experimental Results

Let us first detail the CLEF-IP 2012 dataset for flowchart recognition and the
evaluation protocol. We will then briefly detail the other participant methods
and finally report the obtained results.
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Fig. 5 An example of input image with its corresponding textual information (extracted
from (Piroi et al, 2012)).

3.1 Dataset

The dataset used to evaluate our method is the one from CLEF-IP 2012 (Piroi
et al, 2012). This public dataset contains 150 flowchart images cropped from
real patent documents. All the images in the collection are in binary format
and contain a single flowchart. The dataset is split into 50 training images
with their corresponding textual information, see Fig. 5, and 100 test images.
However, in the final benchmarking task at CLEF-IP 2012, only 44 of those
test images have been used in the evaluation (Piroi et al, 2012).

As the ground-truth used to assess the systems’ performance, an XML-like
file describes the structure of each input flowchart in 3 parts:

– The tag MT refers to the meta information, such as the flowchart title,
the number of nodes and the number of directed and undirected edges.

– The node information is referred with the tag NO, which is composed by
the identifier, the type and the text appearing in it. There are 10 types of
nodes available according to their shape: oval, rectangle, double-rectangle,
parallelogram, diamond, circle, point, cylinder, no-box and unknown.

– The tags DE and UE correspond to the information of directed and undi-
rected edges respectively. They are composed by the starting and ending
node identifiers, their functionality and their associated text. The type of
the edges can be either plain or wiggly, where plain refer to edges that
connect nodes, and wiggly states for edges that relate nodes with text.
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The available training data (50 flowcharts with their corresonding ground-
tuth released by the CLEF-IP 2012 organizers) has been used for parameter
validation in the tasks of text/graphic separation, raster-to-vector conversion
and node segmentation. In addition to that, we have manually labeled the
types of a set of the nodes in the 50 training images. Such ground-truth allowed
us to train the nearest-neighbor classifier in the node recognition step with a
4-fold cross-validation setup.

3.2 Evaluation Measures

The flowchart recognition task has been evaluated at three different levels.
Namely, how well the flowchart structure has been recognized (structural level),
how well the nodes and the edge types have been recognized (recognition level)
and a third level that evaluates the text label transcription (transcription
level).

In order to assess the methods’ performance at structural level, a graph
metric distance between the topic flowchart Ft and the submitted flowchart
Fs is defined in terms of the most common subgraph, mcs(Ft, Fs) (Bunke and
Shearer, 1998), (Wallis et al, 2001). Formally, it is computed as follows

d(Ft, Fs) = 1− |mcs(Ft, Fs)|
|Ft|+ |Fs| − |mcs(Ft, Fs)|

, (3)

where |Fi| denotes the size of the graph computed as the number of nodes plus
the number of edges.

The most common subgraph measure can be interpreted as follows. When
comparing a recognized flowchart Fs and the ground-truthed expected output
Ft, the maximum common subgraph mcs(Ft, Fs) measures how well the par-
ticipant’s output matches the expected graph. If the participant’s method
output is perfect, the maximum common subgraph is the flowchart itself
and thus mcs(Ft, Fs) = Ft = Fs and d(Ft, Fs) = 0. If the output is miss-
ing a node or some edges, the common structure shared between the out-
put and the groundtruth will be smaller than Ft and consequently since
|mcs(Ft, Fs)| < |Ft|, the final distance d(Ft, Fs) > 0 will increase as long
as we keep missing elements. The same applies if we deliver an output with
extra elements than the ground-truth.

The ability to recognize the nodes and the edges types of the different
submitted runs is evaluated by the accuracy of the classification. Whereas the
performance of the textual transcription is measures with a normalized edit
distance between the automatically transcribed text and the yielded automatic
transcription from the methods.

3.3 CLEF-IP 2012 Participant Methods

Thirteen different runs were submitted to the flowchart recognition task at
CLEF-IP 2012 coming from three different institutions. We have detailed in
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this paper the four different runs (R1–R4) from the Computer Vision Center4

(CVC) submitted at CLEF-IP 2012 (Rusiñol et al, 2012). An implementation5

of our baseline system has been made available in order to allow the interested
readers to test and study our approach.

The team from INRIA6 submitted (Thean et al, 2012) a single run I1.
After applying a text/graphics algorithm, nodes are segmented and features
based on shape symmetry are used in order to recognize the different node
shapes. The commercial OCR from ABBYY was also used here, although the
authors proposed to use a post-correction technique that enhances the textual
output.

The team from JOANNEUM Research 7 submitted (Mörzinger et al, 2012)
eight different runs (N1–N8). The flowchart recognition procedure was based
on a connected component analysis and posterior vectorization aimed at seg-
menting the nodes and finding the linking edges. Nine ad-hoc features were
proposed to recognize the node shapes and the Transym OCR engine was used
to transcribe the textual elements. The 8 different runs are the result of adapt-
ing each module of the system to increase the final performance. Thus, over
the system baseline (run N1), different adaptations and parameters tuning are
presented to mainly increase the node segmentation and recognition and the
edge segmentation.

3.4 Results

Let us first evaluate the proposed system’s performance qualitatively by look-
ing at specific cases where we face some problems and then present the ob-
tained quantitative results.

Although visually the system seems to perform quite well, we have iden-
tified several cases where the proposed modules fail, examples of which are
presented in Fig. 6.

First of all, the node and edge segmentation modules are based on CCs.
When either a node (Fig. 6a)) or an edge (Fig. 6b)) is broken it is usually
not well segmented by any of the proposed methods. In addition, low-quality
documents are hard to “read” by the OCR engine (Fig. 6c)). Finally, the
text/graphics separation module is also based on the analysis of CCs, so when
text characters overlap with graphical elements, they are not properly seg-
mented. This is the case shown in Fig. 6d), where the character F of FROM
and the character D from FIELD touch the diamond shape and thus are
classified as graphics and assigned to the graphical layer.

The quantitative evaluation has been separated in three different levels.
We first present in Fig. 7a) the structural level in which the methods are eval-
uated in terms of their abilities to correctly extract the flowchart structure.

4 http://www.cvc.uab.cat/
5 Code available at: http://www.cvc.uab.es/~marcal/demos/flowchart.html
6 http://www.inria.fr/
7 http://www.joanneum.at/
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a) b)

c) d)

Fig. 6 Problematic cases. a) Broken node, b) broken edge, c) low-quality text, d)
text/graphics overlapping.
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Fig. 7 Evaluation results at CLEF-IP2012 a) of the transcription level computed in terms
of the normalized edit distance, b) of the structural level computed in terms of the most
common subgraph, and c) of the recognition level computed in terms of the accuracy at
node classification.

As detailed above, this structural correctness of the delivered results is com-
puted in terms of the most common subgraph between the obtained results
and the ground-truth graphs. At first glance we can see that the two runs (R3
and R4) that were based on the vectorial representation perform much worse
than the ones working at pixel level (R1 and R2). This fact can be appre-
ciated in Fig. 8a) where we show the maximum common subgraph achieved
at each flowchart under evaluation for both pixel and vectorial-based runs.
In the vectorial approaches we yield a d = 0.56 whereas the pixel-based ap-
proaches delivered a d = 0.9. Although both approaches are rather similar, in
the sense that they both look at “closed things”, the difference is the input
data they process, either the raw pixels or extracted vectors. When extract-
ing such vectors, we decided not to use any pre-processing step at pixel level,
the raster-to-vector conversion has been applied to the raw pixels from the
graphical layer. Even the smallest gap in nodes or edges provoke to loose the
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Fig. 8 Analysis of the obtained a) mcs and b) node recognition for each of the 44 flowcharts
depending on the different modules. a) Pixel-based segmentation versus vectorial-based anal-
ysis. b) BSM node descriptor versus Geometric moments description.

connectivity between loops and thus provoked that certain structures are not
correctly retrieved. In contrast, in the pixel-based approaches we applied a
pre-processing step before the CCs analysis devoted to fill such small gaps,
that fixed such problems. When comparing the performance of R1 and R3
with the rest of submitted runs, we can see in Table 2 that at structural level,
the proposed architecture outperforms the rest of the runs.

We present in Fig. 7b) the accuracies reached at node recognition. In that
case the node recognition methodology presented in (Thean et al, 2012) cor-
responding to the I1 run is the one that performs the best. The squeezing
operation the authors propose in order to normalize shapes presenting great
variations such as ovals and diamonds into a canonical form, has proven its
discriminative power with respect to the rest of submitted runs. In our sub-
mitted runs, we can see that the BSM descriptor R1 performs better than the
geometric moments R2 for the nodes extracted with the pixel-based approach.
We present in Fig. 8b) the reached accuracies per flowchart when using either
the BSM or the geometric moment descriptor. We can see that in most of the
flowcharts, the BSM steadily outperforms the geometric moment descriptor.
Regarding the vectorial approach, both descriptors perform equally, but the
amount of “detected” nodes is much smaller as pointed earlier in the structural
level evaluation. The fact that better recognition rates have been achieved by
the other participants, proves that in the specific scenario of flowchart recogni-
tion ad-hoc node descriptors outperform state-of-the-art descriptors proposed
to be used for generic purposes.

Finally, regarding the transcription level, all the participants used off-the-
shelve OCR engines. In Fig. 7c) we can see the performances measures in
terms of the normalized edit distance between the transcribed text and the
ground-truth one. Here it is worth to note that in our configurations, we fed to
the OCR the segmented regions of the documents in which we detected some
text. The fact the run I1 use the ABBYY technology as well but obtains worse
results than our runs R1 and R2 (0.33 in I1 against a 0.19 in R1–R2) highlights
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Table 2 Summary of the evaluation results at CLEF-IP 2012 for the three participants

Method Structural Level Recognition Level Transcription Level

mcs accuracy norm. edit distance

CVC, Our proposal
0.9026 0.7250 0.1888

(Rusiñol et al, 2012)

INRIA
0.8789 0.8909 0.3337

(Thean et al, 2012)

JOANNEUM
0.8563 0.7982 0.4461

(Mörzinger et al, 2012)

the importance in such scenarios to provide an accurate text segmentation to
the OCR. It is also worth to note that in our approach we do not post-process
the OCR output nor build any specific language model. As proven in (Thean
et al, 2012) an addition of such post-processing steps or an ad-hoc tuning of
the OCR engine for the specific purpose of “reading” flowchart’s text for sure
will provide a much more accurate transcription output.

We provide in Table 2 a per-participant summary of the evaluation results
in the CLEF-IP 2012 for all the three different levels. We can appreciate the
proposed architecture outperform the rest of the submitted runs at structural
and transcription level, whereas better recognition rates have been achieved
by the other participants.

4 Conclusions

In this paper we have presented a modular flowchart recognition system. For
building such modules we have proposed to apply state-of-the-art text/graphic
recognition techniques, segmentation methods, general purpose shape descrip-
tors, which are well-known in the graphics recognition community, and a com-
mercial OCR. The large amount of existing literature in some of these modules
has motivated us to test four different versions of the proposed architecture.
Two methods working at pixel-based flowchart representation and two meth-
ods working at vectorial-based flowchart representation. In addition, we have
tested two general purpose shape descriptors for the node recognition module.
The reported results show that some of the configurations of the different pre-
sented modules (specially the R1 run) provide interesting results for the given
problem of flowchart recognition.

The proposed method outputs a structured representation of flowchart im-
ages, which can later be semantically queried to retrieve related information
conveyed in this sort of graphical drawings. Such graphics understanding tech-
niques can be very beneficial in the patent search domain by providing a
complementary retrieval ability to the image search by visual similarity ap-
proaches.

Thanks to the CLEF-IP flowchart recognition task, some flaws of the cur-
rent method have been identified. First, since we have based the node seg-
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mentation on the seek of closed structures, the proposed methods are quite
sensitive to noise when the nodes are broken either due to bad acquisition
or to design purposes. It would be beneficial to test other segmentation ap-
proaches based on Gestalt laws that should not be that sensitive. On the the
other hand, we have applied off-the-shelf well-known shape descriptors with
the idea that being general-purpose they will perform well a well in such sce-
nario. The evaluation has proven that using ad-hoc shape descriptors to the
specific tasks of recognizing the shapes that are possible within the flowchart
lexicon outperforms the generic shape descriptors. Further research on such
dedicated descriptors would enhance the system’s performance.
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