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A Performance Evaluation Protocol for Symbol Spotting
Systems in Terms of Recognition and Location Indices

Marçal Rusiñol · Josep Lladós

Abstract Symbol spotting systems are intended to re-
trieve regions of interest from a document image data-
base where the queried symbol is likely to be found.
They shall have the ability to recognize and locate gra-
phical symbols in a single step. In this paper we present
a set of measures to evaluate the performance of a sym-
bol spotting system in terms of recognition abilities, lo-
cation accuracy and scalability. We show that the pro-
posed measures allow to determine the weaknesses and
strengths of different methods. In particular we have
tested a symbol spotting method based on a set of four
different off-the-shelf shape descriptors.

Keywords Performance Evaluation, Symbol Spotting,
Graphics Recognition.

1 Introduction

Performance evaluation methods are essential tools to
understand and compare the behavior of algorithms
and systems. A performance evaluation protocol should
identify the strengths and weaknesses of the methods
under test. The analysis of these strong points and
drawbacks should determine which method is the most
suitable for a certain use case and predict its behavior
when using it in real applications with real data.

In the last years, performance evaluation has been
a quite prolific research topic in the Document Image
Analysis and Recognition (DIAR) field. Several com-
petitions focused on particular topics, namely, sym-
bol recognition, layout analysis, text detection among
others, have been organized in the major conferences
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and workshops of this field. We can also find a lot of
contributions in the recent literature proposing evalua-
tion techniques for different DIAR applications. Perfor-
mance evaluation does not only focus on feature level
techniques such as line and arc detection algorithms
[19,20] or raster-to-vector systems [34], but is also use-
ful to evaluate higher level applications such as symbol
recognition [40] or layout analysis [2].

In this paper we propose a set of measures and
methodologies to evaluate the performance of spotting
systems. Although we mainly focus on the specific case
of symbol spotting, these measures are also applicable
to performance evaluation of other applications such as
word spotting, or even object detection in Computer
Vision applications. Symbol spotting was first intro-
duced by Tombre and Lamiroy in [37] and can be de-
fined as a way to efficiently locate graphical symbols in
document images without using full recognition meth-
ods. Such systems are intended to index large collec-
tions of document images in terms of the graphical sym-
bols which appear in them. Given a graphical symbol as
query, the system has to retrieve a ranked list of loca-
tions where the query symbol is likely to be found. Since
spotting systems deal with recognition and segmenta-
tion at the same time, such abilities must be taken into
account by the evaluation process. Segmentation errors
must be punished as well as recognition mistakes.

As we illustrate in the review provided in section
2, there exist many approaches to measure the per-
formance of different Graphics Recognition algorithms.
However, in the particular case of symbol spotting, ex-
isting methods in the literature just provide measures
based on binary decisions of found / not found. We de-
velop the theory in this paper that the performance of
a symbol spotting system should be defined in terms
of two components: the recognition and the location
goodness. Starting from this hypothesis, the main con-



2

tribution of this paper is to propose a set of perfor-
mance evaluation measures, based on the precision and
recall concepts, to evaluate the performance of symbol
spotting systems in terms of two criteria, namely recog-
nition and location. In addition, a second contribution
is to use the same formalism to evaluate a third quality
criterion, the scalability under an increasing number of
symbol prototypes. Most of the work found in the liter-
ature dealing with performance evaluation of Graphics
Recognition systems is mainly focused on the compu-
tation of a score to allow an easy way to rank different
methods. We strongly believe that the proposed mea-
sures can give a more accurate idea of the real behav-
ior of the system under study than typical recognition
rates.

The remainder of this paper is organized as fol-
lows: We briefly overview in section 2 the work on per-
formance evaluation for related areas such as retrieval
systems, Graphics Recognition and Document Image
Analysis applications. In section 3, we basically review
the well-known measures of precision and recall typi-
cally used in retrieval evaluation and the measures we
can derive from precision and recall. Section 4 outlines
how these measures can be reformulated and applied to
evaluate a spotting system in terms of retrieving regions
of interest from a document image database. Section 5
shows a use case of such measures, evaluating the per-
formance of a symbol spotting method based on a set
of four different off-the-shelf shape descriptors. Finally,
the conclusions and a short discussion can be found in
section 6.

2 Related Work

Symbol spotting systems are intended to produce a
ranked list of regions of interest cropped from the doc-
ument images stored in the database where the queried
symbol is likely to be found. Symbol spotting can thus
be seen as a particular application within the Informa-
tion Retrieval (IR) domain. Usually, retrieval systems
are evaluated by precision and recall ratios which give
an idea about the relevance and the completeness of
the results (we will briefly review these measures in
section 3). These basic measures can be enhanced con-
sidering many other indicators depending on the appli-
cation. For instance, Lu et al. evaluate in [22] a set of
desktop search engines by deriving a set of ratios from
precision and recall to indicate the abilities of the sys-
tems when incrementally retrieving documents. Müller
et al. evaluate in [27] content-based image retrieval sys-
tems, proposing some strategies to take into account
the way the number of items stored in the collection af-
fects the results and how user feedback can improve the

response of such systems. Kang et al. evaluate in [16]
a text retrieval system which uses semantic indexing,
focusing on the distribution and amount of key-indices
used to index the database. Finally, we can find in [12,
28] the performance analysis of some IR systems hav-
ing the information distributed in a peer-to-peer net-
work (P2PIR), which takes into account the query re-
sponse time, the network resources requirements and
the tradeoff between distributed and centralized sys-
tems. As we can see, the coverage of IR topic is so wide
that even if researchers use similar indicators to evalu-
ate the performance of their methods, no general eval-
uation framework can be defined. In our case we will
also base our measures on the notions of precision and
recall by adapting them to the recognition and location
abilities that the spotting systems should present.

In the Document Image Analysis and more partic-
ularly the Graphics Recognition field, some work fo-
cused on spotting can be found. However all this work
is evaluated by ad-hoc measures. For instance, Rath
and Manmatha presented in [30] a system able to spot
handwritten words in ancient documents. They evalu-
ate their system with a score based only on the precision
value. Marcus presented in [26] an algorithm to spot
spoken words in an audio signal. The evaluation is based
on Receiver Operating Characteristics (ROC ) graphs
[11] which are related to precision and recall measures.
Tabbone and Zuwala present in [36] a method to spot
graphical symbols in a collection of electronic drawings.
They base the evaluation of their method in precision
and recall graphs. Finally, Valveny et al. present in [40]
a framework to evaluate symbol recognition methods
envisaging a way to evaluate location and recognition
of symbols by also using precision and recall measures.
However, all these methods are computed on a binary
retrieval notion: whether an item is considered retrieved
or not. By these measures one can see the ability of the
system in retrieving relevant items and discarding neg-
ative ones, but these measures do not evaluate how well
the system located the queried objects.

To avoid binary relevance labelling, our measure-
ments are inspired in the techniques used to evaluate
layout analysis systems. In fact, layout analysis shares
some similarities with spotting in the sense that sub-
regions from documents have to be labelled accord-
ing to their content. Layout analysis competitions [3–5]
were held in last editions of the ICDAR conference.
In these contests, the evaluation of the participants’
methods was done according to the overlapping be-
tween regions of the results and the ground-truth. Two
indicators introduced in [29] are used to formulate an
entity detection measure from which an averaged seg-
mentation measure is deducted to score the systems.
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Following the same idea, in the text detection competi-
tions [23,24] held in last editions of ICDAR, precision
and recall measures were computed in terms of overlap-
ping between bounding-boxes of the ground-truth and
the results. From the precision and recall numbers, a
score was computed to rank the algorithm performance.
However we believe that the use of a single evaluation
score allow an easy ranking of the different systems,
but hinders the understandability of their behavior and
the performance prediction when using other type of
datasets.

Finally, in the last symbol recognition competitions
[1,38,39] held in the last GREC workshop editions, sev-
eral symbol descriptors where evaluated. In that case,
the performance is evaluated by the recognition rates
the systems yield. In the last edition, other measures
such as the homogeneity and the separability of the
symbol classes in the description space have been in-
troduced. We find very interesting the fact that the
scalability of the systems is also tested. This test is
performed looking how the performance of the systems
evolve as the number of symbol classes to consider in-
creases.

The measures we propose in this paper are based
on precision and recall, since it has been demonstrated
to be a good way to evaluate recognition (or at least
classification) and location at the same time. We for-
mulate the precision and recall notions in terms of over-
lapping between retrieved areas and ground-truth. The
presented measures and plots allow to assess the weak-
nesses and strengths of the methods in terms of recogni-
tion abilities and location accuracy. In addition we also
present a methodology to extract a scalability measure
from precision and recall to test if the methods can be
used with a larger amount of classes. Let us first review
the basic measures used to evaluate retrieval effective-
ness.

3 An Overview on Measures to Evaluate
Retrieval Effectiveness

In this section we review the basic measures provided
in the literature used to evaluate the retrieval effec-
tiveness. The measures outlined in this section will be
reformulated in section 4 for the framework described
in this work.

3.1 Precision and Recall

In the IR field, most measures to evaluate effectiveness
are based on a binary labelling of relevance of the items,
namely whether each item is considered as relevant or

non-relevant. In addition, these measures are also based
on a binary retrieval notion, i.e. whether an item is
retrieved or not.

Given a database consisting of a set of elements tot,
and a query item i to retrieve from it, let us label as
rel the set of relevant objects in the set and rel the set
non-relevant items with regard to the query i. When
querying this item to the database, we label as ret the
set of retrieved elements and as ret the set of elements
from the database which were not retrieved. The re-
trieval matrix of Table 1 shows all the possibilities in
terms of intersections between these sets.

Table 1: Retrieval Matrix

Relevant Non-Relevant TOTAL

Retrieved |ret ∩ rel| |ret ∩ rel| |ret|
Not Retrieved |ret ∩ rel| |ret ∩ rel| |ret|
TOTAL |rel| |rel| |tot|

The analysis of this table allows to define the well-
known ratios of precision and recall (see van Rijsber-
gen’s [31] book on Information Retrieval for more de-
tails) to evaluate the behavior of the IR system which
are computed as follows:

P = |ret∩rel|
|ret| , R = |ret∩rel|

|rel| (1)

For a given retrieval result, the precision measure P

is defined as the ratio between the number of relevant
retrieved items and the number of retrieved items. The
precision measure measures the quality of the retrieval
system in terms of the ability of the system to only
include relevant items in the result. A hundred percent
precision means that no false positive has been included
in the system response. As the precision value decreases,
the more non-relevant items are included in the results.

The recall ratio R is defined as the number of rel-
evant retrieved items as a ratio to the total number of
relevant items in the collection. It measures the effec-
tiveness of the system in retrieving the relevant items.
A hundred percent recall means that all the items la-
belled as relevant are retrieved and no one has been
missed. As the recall value decreases, the more relevant
items are missed by the system which wrongly considers
them as non-relevant.

3.2 P@n and P (r)

The precision and recall measures are computed on the
whole set of items returned by the system. That is,
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they give information about the final performance of
the system after processing a query and do not take
into account the quality of ranking in the resulting list.
IR systems return results ranked by a confidence value.
The first retrieved items are the ones the system be-
lieves that are more likely to match the query. As the
system provides more and more results, the probability
to find non-relevant items increases.

Relevance ranking can be evaluated computing the
precision at a given cut-off rank, considering only the n

topmost results returned by the system. This measure
is called precision at n or P@n. However, this measure
presents the drawback that it does not give information
about recall.

Let us define P (r) as the precision at a given recall
cut-off, that is the precision at that point where recall
has first reached the value r.

3.3 Precision and Recall Plots

The usual way to represent the stability of the system
as the user requires more and more results is to plot
precision and recall against each other. Such plots are
computed stepwise retrieving at each step a given item
while varying the decision threshold value over the con-
fidence rate, i.e. computing P@n for the different values
of n and plot this values against its associated recall.

These plots show the tradeoff between precision and
recall. Buckland and Gey analyzed in [8] the relation-
ship between both ratios concluding that they are in-
versely related, trying to increase one usually provokes
the other to be reduced. Thus, when comparing several
methods, the one yielding the higher values for both
precision and recall will be the best. However, it is not
always easy to assess which precision and recall plot
corresponds to a better system.

3.4 Measures of Quality

Sometimes it is difficult to measure the effectiveness by
a measure composed by more than a number. The diffi-
culty in certain cases to assess which method is the best,
has led to invest in some composite measures which can
rank the methods under study according to a combina-
tion of precision and recall information. However, as
claimed in [31], usually these measures are rather ad-
hoc and difficult to interpret.

Let us see a couple of composite measures which try
to combine both precision and recall information in a
single number.

3.4.1 Average Precision

We can define the average precision AveP using each
precision value after truncating at each relevant item
in the ranked list resulting after a query. Average pre-
cision is one of the evaluation measures used by the
TRECVid1 community [33].

For a given query, let r(n) be a binary function on
the relevance of the nth item in the returned ranked
list, we define the average precision as follows:

AveP =
∑|ret|

n=1(P@n× r(n))
|rel| (2)

The average precision is a measure of quality which
rewards the earliest return of relevant items. Retriev-
ing all relevant items in the collection and ranking them
perfectly will lead to an average precision of 1. The aver-
age precision can also be seen as the area under the pre-
cision and recall plot. However, average precision does
not take into account the fact that a system returns
non-relevant items after having reached a hundred per-
cent recall (i.e. having returned all relevant items).

3.4.2 F -score

Another classical composite measure is the F -score (see
[13] for more details) which is the weighted harmonic
mean of precision and recall, computed as follows:

F β =
(1 + β2)× P ×R

(β2 × P ) + R
(3)

Which for a value of β = 1 is equivalent to Dice’s co-
efficient (a well-known similarity measure between two
sets X and Y ) defined as:

s =
2|X ∩ Y |
|X|+ |Y | (4)

Although there is some work like [25] which point
out some drawbacks of this measure, the F -score is
widely used as a measure of merit in the IR literature.

The F -score can also be computed at several recall
cut-offs to evaluate the stability of a system’s response.
We re-formulate the F -score presented in eq. 3 for sev-
eral recall values as:

F β(r) =
(1 + β2)× P (r)× r

(β2 × P (r)) + r
, with r ∈ [0, R] (5)

We can see some examples on how F 1(r)-score evol-
ves in Fig. 1 for several synthetic precision and recall
plots. The better the system responds, the higher its
values. As we can appreciate, F -score heavily penalizes
low values of precision or recall.

1 TREC Video Retrieval Evaluation (http://www-
nlpir.nist.gov/projects/trecvid/)
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(a)

(b)

Fig. 1: F 1(r)-score plots for different synthetic precision and re-
call plots.

3.5 Fall-Out and Generality

Let us finally introduce two more measures, one related
to the non-relevant retrieved items and the other re-
lated to the dataset, which are computed as follows:

Fo = |ret∩rel|
|rel| , G = |rel|

|tot| (6)

The fall-out ratio Fo gives information about the
number of non-relevant retrieved items in respect to
the number of non-relevant items present in the collec-
tion. Independent of the precision of a system, this mea-
sure should have low values to consider the behavior of
the system good. Either because very few non-relevant
items have been retrieved or because the number of non-
relevant retrieved items is negligible in relation to the
number of non-relevant items in the dataset. To eval-
uate the evolution of the systems response in terms of
false positives usually the fall-out is plotted against re-
call. This plot is equivalent to the typical ROC graphs
[11], which are commonly used to evaluate the perfor-
mance of classifiers. We can find in [9] a study of the
relationship between precision-recall and ROC curves.

Finally, the generality ratio G, gives information
about the collection dataset. It is computed as the num-
ber of relevant items in the entire collection for a certain
query. It can be then averaged for all the considered
queries in the experimental setup denoted as the AveG

ratio. This ratio does not give any measure about the ef-
fectiveness of the retrieval itself, but complements the
previous measures. As claimed in [15], when evaluat-
ing the performance of a retrieval system, this measure
should be given to really understand the meaning of the
values of precision, recall and fall-out.

3.6 Central Tendency of Precision and Recall

To evaluate a retrieval system, obviously many queries
have to be performed. Each query under evaluation re-
sults in a precision and recall plot. To give an idea on
well good the system responds, the retrieval results are
averaged over these queries. The central tendency of
several precision and recall plots are computed sam-
pling individual curves at different points and averag-
ing the samples. We can see an intuitive example of the
central tendency in Fig. 2.

Fig. 2: An example of computing the central tendency of precision
and recall plots.

The same averaging technique is applied to fall-out
versus recall plots and to F β(r)-score plots.

4 Precision and Recall for Spotting Systems

Spotting systems are intended to perform both recog-
nition and location at the same time, and thus, these
abilities have to be evaluated together. Let us first pro-
pose a formulation of the precision and recall measures
to evaluate both concepts. To help the interpretation of
precision and recall plots, we propose to use two more
measures focused at symbol level which only consider a
binary concept of retrieval. Finally, we propose a scala-
bility test to check the systems ability to achieve similar
behavior independent of the number of queried sym-
bols.

4.1 Precision and Recall of Regions of Interest

To evaluate the performance of a spotting system we
propose a set of measures inspired by both IR and lay-
out analysis. The idea is to merge both precision and
recall measures with area overlapping rates. Precision
and recall ratios provide information on the incremental
accuracy of the retrieval process in terms of recognized
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(a) Original. (b) Ground-truth.

(c) Result. (d) Polygon Overlapping.

A(Pi) Precision (%) Recall (%)

A(Prel) = 60560

88.99 91.56
A(Pret) = 62307
A(Pret⊕ Prel) = 55449

A(Pret⊕ Prel) = 5111

A(Pret⊕ Prel) = 6858

(e) Polygon Set Areas, Precision and Recall.

Fig. 3: Original image (a), its ground-truth (b) and the result (c) of a spotting system. The overlapping between results and ground-

truth (d) is labelled according to Pret⊕Prel (light gray), Pret⊕Prel (dark gray) or Pret⊕Prel (black). In (e) we can see the detailed
areas and obtained precision and recall.

items. On the other hand, the region overlapping be-
tween results and ground-truth data is used to evaluate
the segmentation accuracy.

To compute the region overlapping between result
and ground-truth, we define for both data polygons rep-
resenting regions of interest. The more accurate is the
definition of the region of interest the more the evalu-
ation is reliable. To define the region of interest where
a symbol is located we use the convex-hull [7] of all the
points belonging to the symbol. In our applications, we
usually define the graphical symbols by their external
contours, so the convex-hull of the contour pixels en-
globe the whole symbol. Convex-hulls define much more
accurately the zones where a symbol is than bounding-
boxes or ellipses. This representation can be extended
to different formats of the data of the collection (bitmap
or vectorial format) and to different symbol represen-
tations (internal pixels, skeleton, contours, segments,
etc.).

Given a collection of graphical documents, we de-
note as Ptot the set of polygons representing the whole
document image database. For any graphical symbol S

to spot in the collection, we label as Prel the ground-
truth polygon set which is composed by all the poly-
gons framing the locations where we find an instance of
the symbol S. When spotting S in the document collec-

tion, we denote as Pret the set of retrieved polygons. To
match the results from the system to the ground-truth
polygon set, we define the polygon set intersection op-
eration Pk = Pi ⊕ Pj , that given two polygon sets Pi

and Pj , results in a set of polygons from the spatial
overlapping of the polygons belonging to the different
sets. To measure this polygon overlapping, we define the
function A(Pi) as the sum of areas of all the polygons
in the set Pi.

From the above sets and functions, precision and
recall ratios of can thus be easily formulated in terms
of areas of the overlapping between sets of polygons
representing results and ground-truth as follows:

PA = A(Pret⊕Prel)
A(Pret) , RA = A(Pret⊕Prel)

A(Prel) (7)

We can see in Fig. 3 an example of ground-truthed
symbols and a result from a spotting system. Some
background region has been considered as forming part
of the symbol. When we compute the overlapping be-
tween retrieved regions and relevant ones this false posi-
tive region is identified, resulting in a precision decrease.
On the other hand some part of the symbol has been
missed, this results to the recall value not reaching one
hundred percent.
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4.2 Measures of Quality, Fall-out and Generality

Analogously, the measures of quality AveP and F -score,
and the ratios fall-out and generality can be expressed
in terms of the area of the overlapping between polygon
sets representing the ground-truth and the results from
the spotting system.

We reformulate eq. 2 by using the area precision at
n (PA@n). That is computing the area precision value
after truncating the result list after each polygon having
some overlapping with a polygon in the ground-truth.
The average area precision is then computed as:

AvePA =
∑|Pret|

n=1 (PA@n× r(n))
|Prel| (8)

By using the area precision and area recall, we re-
formulate the F -score from eq. 3 as:

F β
A =

(1 + β2)× PA ×RA

(β2 × PA) + RA
(9)

and the use of the area precision at a certain area
recall cut-off (PA(r)) aim to reformulate eq. 5 as:

F β
A(r) =

(1 + β2)× PA(r)× r

(β2 × PA(r)) + r
, with r ∈ [0, RA] (10)

Finally, Prel being the complementary polygon set
for the ground-truth we can reformulate the fall-out and
the generality from eq. 6 as:

FoA = A(Pret⊕Prel)

A(Prel)
, GA = A(Prel)

A(Ptot) (11)

4.3 Measures at Symbol Level

As pointed out in [23], sometimes precision and recall
based measures are difficult to interpret. A precision of
70% could mean that all symbols were found with an
accuracy of 70%, or, on the other hand, that only 70% of
the symbols were correctly identified and the other 30%
completely missed. A low precision value can be due to
a low accuracy in the recognition or to a bad location
due to over-segmenting. The recall value can be also
affected by missed symbols or by under-segmentation.

To complement the precision and recall based mea-
sures, in our experiments we also provide two measures
focusing on the recognition at symbol level. In this case
we only consider a binary concept of retrieval. Whether
a symbol is found or not. Let us consider one symbol Si

and its polygonal representation Preli from the ground-
truth, it will be considered as recognized if:

A(Preli ⊕ Pret) ≥ thr ∗A(Preli) (12)

That is, if the resulting polygons are able to over-
lap at least a certain percentage of the ground-truthed

representation of a symbol, this symbol is considered
as recognized. On the other hand, if the resulting poly-
gons do not cover the ground-truth, the symbol is con-
sidered as missed. Of course, as with all decisions im-
plying a certain threshold, its value can be critical, and
the system’s evaluation can depend on it. Its definition
is completely subjective as it depends on what the user
considers a symbol as being detected or not. The im-
portant thing here is that this value is provided when
evaluating a system, so as the readers can easily inter-
pret the meaning of the evaluation results. In our case,
we consider a symbol as detected if it overlaps at least
a 75% with the ground-truth area.

At symbol level, we derive the recognition rate of
the spotting system under study. In addition, if one of
the polygons Pretj in the resulting set does not over-
lap with any recognized symbol, it is considered a false
positive. For all the possible queries, the average of false
positives AveFP is computed. These two measures help
to better interpret the values of precision and recall.

Notice that the recognition rate is expressed as a
percentage of the total number of symbols in the ground-
truth and can be used as a measure of quality by itself,
but the false positives are not normalized and are given
in absolute values. This is due to the fact that we can
not define the negative set in terms of symbol items in
the dataset. The false positive average can only be ex-
pressed in absolute values and used to compare methods
between them.

4.4 Scalability Test

Finally, one of the main interests for spotting systems
is that a system has to be applicable to a large data
corpora. To test the scalability of the system, i.e. its
ability to achieve similar behavior independently from
the number of queried symbols, we propose a measure
to evaluate the scalability of the systems under study.

A scalable system has to yield similar responses no
matter what the number of model classes taken into ac-
count is. We can measure the scalability of a system in
terms of its variance in both precision and recall. Let us
consider the synthetic example of Fig. 4a which is highly
damaged by the addition of new classes. Let us define
stdR and stdP the standard deviations in precision and
recall for a certain sampling of the precision and re-
call plot. We can see in Fig. 4b the central tendency
of all precision and recall plots with error bars follow-
ing the vertical and horizontal axis to check the effect
in both precision and recall measures when considering
more and more classes. The greater the deviation is, the
worst the system tolerates changes in the class number,
thus the system can be considered as less scalable. To
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(a) Synthetic precision
and recall plots.

(b) Averaged precision
and recall plot with stan-
dard deviations in recall
and precision.

(c) Averaged F 1
A(r)-score

plot with associated stan-
dard deviations.

Fig. 4: Scalability test example.

allow an easier interpretation, the standard deviation
can be computed for the F β

A(r)-score plots (as shown
in Fig. 4c) having now a single variance measure instead
of having one for precision and one for recall. To com-
pare the scalability between different methods, both the
mean std of all the samples of the standard deviation
and the maximum max(std) of all the samples of the
standard deviation are given as variance measures.

On the other hand, the performance of a spotting
system not only is affected by the increasing number of
considered models but also is dependent on the size of
the document collection. To appreciate how the system
degrades with the expansion of the dataset we propose
to work at symbol level. Recognition rates and false
alarms are given to illustrate the performance variabil-
ity in relation to the size of the database. These mea-
sures help to predict how the performance of a system
will be affected by the inclusion of more documents in
the database. However, increasing the database size has
an important drawback. When adding new documents
in the database implicitly we can be adding new graph-
ical symbols contained in these new documents. As a
consequence of that the number of model symbols has
also to be increased along with the dataset size.

5 Evaluating a Symbol Spotting System

In this section, to show an example of application of
the presented evaluation framework, we tested a sym-
bol spotting architecture. We first explain the ground-
truthing process, then we briefly detail the spotting sys-
tem and the used dataset and finally we provide the
evaluation results for this architecture. The description
of symbol spotting methods is out of the scope of this
paper.

5.1 Ground-truthing

First, an annotation tool has been developed to build
the ground-truth. The user can select graphical enti-
ties in the document images roughly segmenting them
using a sketching application. All the contour pixels
falling inside the delimited zone of interest are taken as
being part of the symbol. If a given connected compo-
nent has more pixels outside the zone of interest than
inside, it is considered as being part of the background.
This basic annotation tool works fine with architectural
drawings where the symbols are usually not extensively
connected with background elements. For other kinds
of documents, e.g. electronic diagrams or geographical
maps, the annotation tool should be enhanced in or-
der to provide a trusted ground-truth. For all the fore-
ground pixels, we compute the convex-hull as presented
in [7] as the minimum area of interest which contains
the symbol. Once the region of interest is shown, the
user can modify it using certain control points and la-
bel them by their content. We can see a screen-shot of
the sketching application in Fig. 5a. The use of convex-
hulls as the ground-truth primitive may be inadequate
for some spotting systems. The inclusion of noisy pixels
in the spotting results may provoke considerable devi-
ations of the convex-hull from the one defined in the
ground-truth. However, the presented evaluation mea-
sures can be easily adapted to other choices of ground-
truth primitives. From coarser to more refined primi-
tives we can select for instance to use bounding-boxes,
ellipses, isothetic polygons, quad-trees, etc. as ground-
truth primitives. In all these cases, the computation
of the overlap between ground-truth and automatically
extracted primitives is straightforward.

As the user labels the regions containing the graph-
ical symbols, an XML file is constructed to store the in-
formation about the whole library. Following the same
file structure used for page layout ground-truth pre-
sented in [6], the convex-hull coordinates and the sym-
bol category as well as other information about the
document are organized in the XML file we can see
in Fig. 5b.
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(a) (b)

Fig. 5: Sketching annotation tool for ground-truth generation (a) and its ground-truth XML file (b).

As claimed in [21], creating a ground-truth for gra-
phic documents is not always straightforward due to
ambiguous cases or subjectivity issues. For example, in
the architectural field, each architect tends to use its
own symbol designs to represent a furniture element.
Whereas human observers have no difficulty in clus-
tering these elements despite the design differences, it
is usually impossible for a spotting system to be able
to identify different designs as the same object. In the
process of ground-truth building, we tried to avoid such
problems but we believe that the use of a collabora-
tive framework as proposed in [40] would enhance a
lot the quality and the accuracy of this ground-truth.
To avoid subjective decisions on the ground-truthing
process, synthetic ground-truth can be generated for
graphic rich documents, as recently presented in [10].
Such tools which synthetically generate ground-truthed
data present several interesting advantages. Subjective
decisions are avoided since no human interaction is need-
ed, thus providing an error-free labelling of graphical
items. In addition, we have complete control on the
number of items in the collection and the number of
symbols which have to appear in each document, mak-
ing the scalability tests much more easy and reliable.
However, nowadays the data generated by these meth-
ods still appears quite artificial and the use of real data
(when possible) should be preferred.

5.2 Spotting Method Under Test

The symbol spotting architecture we use to test the
evaluation measures is based on a relational indexing
scheme for graphical primitives and a voting method-
ology which clusters the locations where several hy-
potheses are casted. These are the locations where it
is likely to find the queried symbol. The used spotting
system architecture is similar to the one presented in
[32]. Symbols are decomposed in basic primitives which
are subsequently described by a shape descriptor. The
feature vectors arising from the description are indexed
by a hashing technique. When querying this hash ta-
ble, a relational indexing technique is applied. That is,
that only similar primitives sharing the same spatial
relationship are retrieved. One of the most important
points of the system is the way the graphical primitives
are described to be indexed. We tested four off-the-shelf
shape descriptors described below.

– Method a: uses a set of simple ratios described in
[35] such as the eccentricity or the non-circularity
as shape descriptors. These rough descriptors are
formulated from the shape contour of the symbol’s
primitives. It is expected that the use of such simple
shape description can only discriminate very dissim-
ilar shapes; the system should result in a lot of false
alarms but should be tolerant to distortions and
thus retrieve almost all the instances of the queried
symbol.

– Method b: uses Hu’s geometric invariants [14] to
describe contours. These invariants are known as
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(a) Burner. (b) Chair.

(c) Stairs. (d) Television.

(e) Sample Document.

Fig. 6: Symbol models and an example of a document in the
database.

good shape descriptors. The expected performance
is to have good spotting rates in all aspects.

– Method c: is based on a reformulation of the pre-
vious one. Geometric moments can be formulated
for polygonally approximated contours [18] which
are taken as primitives. In this case, the use of sim-
pler primitives should result to smaller tolerance to
distortions.

– Method d: uses the Fourier transform to compactly
represent a curvature signature computed over the
shape contour. This descriptor is detailed in [17].
This is also a good shape descriptor and the systems
performance is expected to be good in all aspects.

Note that we do not want to perform an exhaus-
tive evaluation of shape descriptors or primitives. These
methods have been chosen because of their different na-
ture and to test if the proposed evaluation measures
really determine the strong and weak points of each
method. As the descriptors are well-known among the
Graphics Recognition community, it is easy to assess
whether the results correspond to the expected behav-
iors.

5.3 Dataset

The dataset is a collection of architectural floorplans
consisting of 42 images (of 3215 × 2064 pixels in av-

erage) arising from four different projects. Any given
furniture symbol appears in several images in the data-
base. The symbols taken into account for these experi-
ments are divided into 38 classes and we have in total
344 instances in the document images. In a single docu-
ment image the average of symbols is around 8 ranging
from 0 to 28 symbols. The models to query the docu-
ment database are cropped from the document images.
We can see in Fig. 6 some examples of model symbols
as well as a sample document from the database.

5.4 Evaluation

We first present the plots showing precision versus re-
call and fall-out versus recall in Fig. 7 for all the four
spotting methods under evaluation using the whole col-
lection of documents. Methods b and d show an accept-
able tradeoff between precision and recall as expected.
Method d misses much more symbols than method b

but gives a significantly smaller amount of false posi-
tives. Method a yields good recall values, i.e. it succeeds
in retrieving most of the symbols in the document data-
base but has a poor precision due to the high amount of
false positives. Finally, method d shows good precision
values at early recall stages but quickly falls missing
more than half of the symbols in the dataset. The pro-
posed measures aim to stress the expected good behav-
ior of methods b and d and to point out the simplicity
of method a and the lack of tolerance of method c.

We can appreciate in Fig. 8a the F 1
A(r)-score plots.

In this graph we can see again the clear dominance of
methods b and d over the other two. As the F -score
combines both precision and recall, the methods which
fail in one of those measures are clearly demoted in the
overall evaluation. Method a starts with a low precision
value while the precision of method c quickly falls stop-
ping at a 50% recall. Those two methods are clearly at
disadvantage as expected. In Fig. 8b we can see how
we can use the F 1

A(r)-score plots to visually check the
variance of performance of a given method depending
on the symbol the user queries.

In Table 2 we can see the measures of quality for
all the methods. As the average precision AvePA mea-
sure does not take into account the recall, the method
d is ranked as the best. On the other hand, F 1

A-score
gives the best for method b. The measures working at
symbol level, which are intended to evaluate only the
recognition task, are consistent with the results shown
in Fig. 7b. The amount of recognized symbols is related
to the recall value, which ranks the methods in the order
a,b,d and c, in terms of the amount of correctly retrieved
elements. On the other hand, the average of false posi-
tives is related to the fall-off ratio, ranking the methods



11

(a) (b)

Fig. 7: Precision versus recall is shown in (a) and fall-out versus recall in (b).

(a) (b)

Fig. 8: F 1
A(r)-score plot for all methods under test is shown in (a) and F 1

A(r)-score plot depending on the queried symbol for method
b is shown in (b).

Table 2: Measures of quality.

Method AvePA F 1
A-score Rec. rate (%) AveFP AveGA (%)

a 20.08 6.87 93.62 153.42

0.16
b 39.77 23.34 91.3 76.76

c 23.69 12.57 55.62 63.89

d 41.99 21.45 73.33 58.76

in the order d,c,b and a, in terms of the false alarms
present in the results. Finally, the averaged generality
gives an idea of the proportion between relevant and
total elements in the dataset. These last measures aim
to interpret the precision, recall and fall-out values. For
spotting applications it is typical to have an extremely
low generality measure, since usually the documents in
the collections will have much more background objects
than foreground ones. This low generality explains the
low precision values in both precision and recall plots
and in the average precision AvePA indicator.

Finally, the scalability test results are shown in Fig. 9.
Several sets of symbol classes are considered ranging
from only 5 to 35 possible symbols to query. We ran-
domly selected n symbols from the dataset and com-
puted the average precision and recall for these queries.
This experiment has been repeated 100 times for the

sake of stability and the averaged curves are presented
in Figs 9a. First, we notice in the Figs. 9b that the
changes in the number of classes affect different prop-
erties depending on the method. The recall of method a

drastically decreases when introducing more and more
symbol classes, whereas the precision of method c suf-
fers much more than the recall. On the other hand,
methods b and d seem to be equally affected by changes
in scale in both precision and recall. From Figs. 9c we
can see how the variations in the F 1

A(r)-score space are
good indicators of the scalability of the methods under
study. We can see in Table 3 the quality indicators for
scalability tests. We present the mean of the standard
deviations and its maximums. Again, methods b and d

show much more scalability than methods c and a when
looking at the composite measure. Finally, Figs. 10a
and 10b show the scalability test at symbol level when
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Table 3: Scalability test details.

Method Recall Precision F -score

stdR max(stdR) stdP max(stdP ) stdF max(stdF )

a 6.06 11.37 2.32 4.2 2.2 4.09
b 2.22 3.38 1.74 2.01 0.98 1.84
c 1.02 1.6 2.18 2.64 1.21 2.17
d 1.96 2.66 2.46 3.44 0.85 1.09
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(a) Precision recall plots for several
symbol classes.

(b) Averaged precision and recall
plots with standard deviations

following the vertical (precision) and
horizontal (recall) axes.

(c) Averaged F 1
A(r)-score plot with

associated standard deviations.

Fig. 9: Scalability tests for all the four methods.

increasing both the number of models and the dataset
size. As we can appreciate, the recognition rates vary
slightly whereas the number of false alarms is exponen-
tially increased in all the cases along with the dataset
size.

From these results we can conclude that methods
b and d seem to be much better than the other two.
Method b should be chosen when we desire to retrieve
as much symbols as possible, and on the other hand
method d is suitable if we want to reduce the amount
of false positives. Method a should only be chosen if

the presence of false positives is not a problem and the
user prioritizes finding all the positive symbols despite
of the presence of false positives. However its perfor-
mance seems to be affected by the number of consid-
ered symbols. Finally, method c is only suitable if we
are interested in retrieving positive symbols at the first
positions of the ranked retrieved locations even if we
completely miss the rest of the symbols. Methods b and
d also tolerate well changes in the number of considered
classes and should be considered when facing applica-
tions involving a large amount of data. On the other
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(a) Recognition Rates. (b) False Positives.

Fig. 10: Scalability tests at symbol level. Recognition rates (a) and false positives (b) are computed for three different scales of the
dataset in terms of query models and documents in the collection.

hand, the strong points of methods a and c are compro-
mised when introducing more and more symbol classes.
All these conclusions are in accordance with the ex-
pected behavior of the studied methods, showing that
the proposed evaluation protocol emphasizes the ex-
pected strengths and weaknesses of the methods under
study.

6 Discussion and Conclusion

One of the main criticisms of using precision and recall
to evaluate the performance of classification and loca-
tion tasks is that it is sometimes difficult to really asses
the behavior of the system under study. As claimed in
[23], a low precision value can be due to a low accu-
racy in the recognition or to a bad localization due to
over-segmenting. In addition, as pointed out in [41], the
amount of overlap between polygons seems not to be a
perceptively valid measure of quality. Quality indica-
tors as the F -score have been also questioned, in [25]
it is argued that this measure makes the systems look
like they are much better than they really are.

We believe that the presented measures are able to
evaluate well the behavior of symbol spotting systems,
emphasizing their strong and weak points, and their tol-
erance to changes in scale. Precision is sometimes hard
to interpret or does not provide perceptively good indi-
cators, but the point of a spotting system is to retrieve
zones of interest of document images, and the presented
measures aim to measure the system’s ability to do this
task. Quality indicators aim to rank the methods ac-
cording to certain ability, so even if the numbers by
themselves do not have an accurate absolute meaning
they are useful to compare methods between them. Fi-
nally, precision and recall are enhanced by measures
working only at symbol level and the generality factor
which helps to interpret the meaning of the plots. As
shown in the evaluation section, the results obtained by
using the proposed evaluation protocol are consistent

with the ratios working at symbol recognition level, and
most importantly, emphasizes the expected strengths
and weaknesses of the methods under study.
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