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Abstract. Scene text detection and recognition is a crucial task in
computer vision with numerous real-world applications. Transformer-
based approaches are behind all current state-of-the-art models and have
achieved excellent performance. However, the computational require-
ments of the transformer architecture makes training these methods slow
and resource heavy. In this paper, we introduce a new token pruning
strategy that significantly decreases training and inference times with-
out sacrificing performance, striking a balance between accuracy and
speed. We have applied this pruning technique to our own end-to-end
transformer-based scene text understanding architecture. Our method
uses a separate detection branch to guide the pruning of uninformative
image features, which significantly reduces the number of tokens at the
input of the transformer. Experimental results show how our network is
able to obtain competitive results on multiple public benchmarks while
running at significantly higher speeds.

Keywords: Scene Text Detection · Scene Text Recognition · Trans-
former Acceleration.

1 Introduction

Joint text detection and recognition has become a popular topic in the field
of computer vision for its wide range of applications. Text is omnipresent in
man-made environments, and it plays a crucial role in different computer vision
tasks such as visual-question answering [2,46] or cross-modal retrieval [34], and in
many computer vision applications like autonomous navigation [43] or industrial
automation [8].

Early deep-learning based systems for text detection and recognition were
based on two-stage pipelines, a detection network that extracted regions of in-
terest (RoI) and a recognition network that recognized the cropped regions. The
two tasks were treated as separate problems, with no gradient flowing between
the two networks. [25,26]. More recent works attempted to jointly optimize both
parts of the pipeline, allowing end-to-end trainable architectures [11,24,29,33,50].
A common drawback of these networks is that they needed to explicitly rectify
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Fig. 1: Comparison between inference speed (in frames per second) and Hmean on
ICDAR15 for different state-of-art scene text detection and recognition models.
Our approach offers a balance between performance and inference speed thanks
to our novel token pruning. The reported results use two different image scales
(1500 and 2000).

the RoI before they can be fed into the recognizer, which usually reads from left
to right. For example, the authors of FOTS [28], a network that detects rotated
bounding boxes, rectified the rotation of the RoI with their proposed RoIRotate
operation. Other models, such as AbcNet [29] or Mask TextSpotter [24] proposed
more complex de-warping techniques that were able to rectify heavily distorted
text, such as curved text.

More recently, different one-stage methods have started appearing that do
not require corrective operations on the detected areas [13,18,19,40,52]. Many of
these approaches are based on the transformer architecture proposed by Vaswani
et al. [48]. The common approach is to pass the features extracted by a CNN to
the transformer, where the powerful self-attention mechanism performs detec-
tion and recognition. The fully connected topology of the self-attention removes
the need to use RoI corrective operations. One of the drawbacks of the trans-
former is the quadratic complexity of the self-attention mechanism with respect
to the number of input tokens. Increasing the input image resolution results in
significantly slower training and inference times and higher memory usage.

The O(n2) complexity of the transformer has motivated multiple works that
attempt to improve the efficiency of architecture. Some NLP approaches [10,
51] have attempted modifying the fully connected self-attention with simpler
topologies that reduce the complexity to O(n). On vision and ViT-based [5]
models, a popular approach is to reduce the number of tokens by employing
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a sampling/pruning mechanism to progressively discard uninformative tokens
[6, 23, 36, 42]. Many of these strategies such as ATS [6], or EViT [23] have been
specially tailored for classification tasks on the ViT [5] architecture, and can not
be directly applied to the object detection. Approaches like DynamicViT [42]
or IA-RED2 [36] need to train a specific component of the network to remove
tokens, which often employs complex strategies such as reinforcement learning.

In this paper we introduce a novel token-pruning mechanism that has been
specifically designed for scene text detection and recognition models. Our prun-
ing approach works under the assumption that visual information of text is very
local, while most of the background area is non-informative. The pruning mech-
anism reduces the complexity of the model and allows more efficient training
parallelization and lower inference times. This pruning strategy has been ap-
plied to our own transformer encoder-based architecture, which is capable of
reading text in multiple orientations, curvatures and distortions without need-
ing to perform RoI corrections. Figure 2 shows an example of how our network
performs pruning over the visual features before they go into the recognition
branch. Our network has been designed to achieve a balance between quanti-
tative performance and high inference speeds. As seen in Figure 1, our model
manages to get competitive results with the state-of-art while running at higher
FPS. The contributions of this paper are the following:

– A novel token-pruning mechanism that allows the architecture to reduce the
size of the input to the recognizer branch, a transformer-encoder network.
We show how our strategy yields lower training and inference times than
cropping and recognizing the detected areas independently.

– An efficient end-to-end text detection and recognition architecture where
both tasks happen independently of each other. The model does not require
any type of RoI corrective operations over the detected areas thanks to the
fully connected attention mechanism.

– We show that our method manages to balance performance and speed, allow-
ing us to reach competitive results with the state-of-the-art at significantly
higher inference speeds.

2 Related Work

2.1 End-To-End Scene Text Recognition

Scene text detection and recognition is a challenging topic that has been an
active area of research for many years. The complexity and sophistication of
the architectures increased as different datasets and annotation styles started
emerging. The different scenarios for text detection feature horizontal bounding
boxes [17], incidental text with 4-point annotations [16, 35, 47, 49] and, more
recently, arbitrarily shaped text [3, 30] such as curved text, which often feature
complex polygonal annotations.
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Fig. 2: The proposed architecture uses a shared convolutional backbone that
extracts visual features from the image and then up-scales the output feature
map. Two separate branches perform detection and recognition. We use the
detection branch bounding boxes to guide the pruning mechanism, reducing the
number of tokens at the input of the transformer. During training, we use the
ground truth localization of the text to prune the image features.

Earlier models, such as Textboxes [26], directly cropped the detected hori-
zontal boxes from the image, and performed no rectification to the crop. This
was a problem for the most commonly used recognition architectures, such as the
encoder-decoder [21, 22] and the CTC-based [9] networks, because they require
the text to be horizontal and from left to right. As the complexity of annota-
tions increased, models started to feature two-stage architectures that were fully
end-to-end trainable and performed complex RoI rectifications to the detected
areas.

More complex annotations and RoI corrective operations allowed recogni-
tion of text in different shapes and orientations. For example, FOTS [28] uses
a text detection branch to predict oriented text boxes, and uses RoIRotation
to obtain axis-aligned feature maps. The text recognition branch uses a bidi-
rectional LSTM [12, 45] and a CTC [9] network to recognize the crop. Mask
TextSpotterV3 [24] extracts rectangular crops from the segmentation and then
masks-out the area outside of the region of interest. ABCNet [29] uses a more
unconventional approach by fitting Bezier curves to the text instances, which
helps to obtain smoother boundaries around the words. The curves are recti-
fied with their proposed BezierAlign, which uses the control points of the curves
to warp the word into a rectangular shape. TextDragon [7] predicts a series of
quadrangles that follow the shape of the words and use their own RoISlide to
rectify the text.

A recent trend in the community is to use transformer-based [48] networks.
The fully connected topology of the self-attention mechanism avoids having to
use any RoI rectifying operations at all. Some of them are capable of using simple
annotations such as central keypoints [18, 39]. For example, TTS [19] uses a
shared transformer encoder-decoder and different decoder heads to perform word
recognition, detection and segmentation. This method can be trained by either
providing the ground truth polygon annotations, the bounding box, or only
the text in the image. TESTR [53] also employs an encoder-decoder approach
to perform text detection and recognition. The authors use two transformer
decoder networks to extract the detection and the recognition. More recently,
DEER [18] uses a transformer encoder to perform detection-agnostic detection
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and recognition. SwinTextSpotter [13] uses diverse transformer-encoder networks
to improve the synergy between the detected areas and the recognizer.

2.2 Transformer Acceleration

The O(n2) complexity of the transformer architecture proposed by Vaswani et
al. [48] has motivated multiple efforts to reduce its time and space complexity. On
the NLP domain, different approaches have exploited the sparsity of the atten-
tion mechanism to reduce its complexity. For example, the Star-Transformer [10]
replaces the fully connected attention with a star-shaped topology, reducing the
complexity from quadratic to linear. Sparse Transformers [14] introduce mul-
tiple novel architectures that use sparse attention layers that perform faster
un-batched decoding. The authors of the Linformer [51] also achieve linear com-
plexity by approaching the self-attention with a low-rank matrix. Other net-
works such as TinyBERT [15] use distillation to transfer knowledge from a larger
teacher BERT [4] network into a smaller one.

On the vision domain, numerous works have approached the problem by re-
ducing the number of tokens on the input of the standard Vision Transformer
(ViT) [5] architecture. The Hierarchical Vision Transformer [37] proposes an ar-
chitecture that fuses tokens using a pooling operation after every transformer
block, similar to the down-sampling of a convolutional network. EViT [23] pro-
gressively reduces the number of tokens along the different attention layers.
The model uses the attention over the classification token to fuse uninforma-
tive tokens. DynamicViT [42] proposes a prediction module that estimates the
importance of each token and discards tokens that are uninformative. Similar
to EViT, the authors of ATS [6] propose a an adaptive token sampling method
that uses the attention over the classification token to discard tokens. Unlike
EViT, the method proposed is plug-and-play and does not need to be retrained.
IA-RED2 [36] employs a similar strategy to EViT, but they use a reinforcement
algorithm to train the pruning algorithm.

3 Methodology

Transformer acceleration methods for vision are mostly focused on object classifi-
cation with ViT-based models. By contrast, our method has been specifically de-
signed with scene text understanding in mind. We test our proposed acceleration
approach on our own transformer encoder-based model, which has been designed
for fast inference speeds. The architecture performs detection and recognition us-
ing a shared convolutional backbone and two separate branches for detection and
recognition. The detection branch is based on the CenterNet [54] architecture,
which we use to predict the location of the text. These predicted locations are
used to guide the pruning of uninformative image features before feeding them
to the recognition branch, which uses the transformer encoder. This branch is
capable of reading text in multiple orientations as well as curved text without
performing RoI cropping or corrective operations. The self-attention mechanism
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of the transformer combines local information and encodes latent representations
of the words in a grid (Figure 5 shows an example of the recognition grid).

Our token pruning mechanism allows faster training and inference speeds
without compromising the accuracy of the network, in addition of using less
memory. By making use of large, publicly available datasets for scene-text de-
tection and recognition, our approach is able to balance competitive quantitative
results with fast inference speeds. Figure 3 shows a more detailed overview of
the proposed architecture.

Conv
ReLU
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Pool4x4
Conv1X1

2D Positional Encoding

+ reshape
Transformer

encoder

Recognition branch

Detection branch

...

Prediction Grid

...

Recognition head
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Fig. 3: A more detailed overview of the detection and recognition branches of our
proposed architecture. The CenterNet-based detection branch generates detec-
tion proposals while the transformer-based recognition branch encodes a latent
representation of each word in a grid. A separate recognition head generates a
dense prediction map. The pruning mechanism uses the proposals from the de-
tection branch to reduce the number of tokens at the input of the transformer
encoder.

3.1 Architecture

Our model uses a ResNet-34 and a series of transposed convolutional operators
as the backbone of the network. More specifically, we apply two transposed
convolutions that expand the feature maps up to 1/8 of the original resolution.
Inspired by U-Net [44], we combine the lower-level feature maps of the ResNet
with up-scaled feature maps of the expanding path. In the original U-Net, the
higher-level feature maps are cropped and then concatenated to the feature maps
of the expansive path. Instead, our architecture applies a 1 × 1 convolutional
operator over the ResNet feature maps to match the number of channels of the
corresponding up-sampled maps, which are then added. The backbone outputs
a feature map f = RW

S ×H
S ×D, where H and W are the height and width of the

original image and S is the stride, in our case S = 8. The output feature map is
shared by two different branches that perform detection and recognition.
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Text Detection Branch The text detection branch is based on the CenterNet
architecture, an efficient object detection framework that predicts axis-aligned
bounding boxes. CenterNet uses central keypoint estimation to predict the center
of the bounding boxes by generating in a heatmap Ŷ ∈ [0, 1]

W
S ×H

S . During
training, the ground truth heatmap Y is generated by drawing a Gaussian kernel
at the center of each object, which reduces the penalty around the ground truth
keypoints. In this heatmap, a value YX,Y = 1 represents a keypoint, while YX,Y =
0 is background. The loss for the heatmap Lk is the modified focal loss [27]
introduced by [20]. Following [54] and [20], we set α = 2 and β = 4.

The stride of the feature map introduces a discretization error in the keypoint
estimation. To overcome this, CenterNet introduces a local offset Ô ∈ RW

S ×H
S ×2

that helps to adjust each center. Like in the original CenterNet paper, the loss of
the offsets Loff is the L1 loss at the keypoint locations. CenterNet predicts the
widths and the heights of the bounding boxes by regressing both components
at the center of each point, the output has the same form as the local offset
R̂ ∈ RW

S ×H
S ×2. The loss of the offsets Lsize is again the L1 loss in each one of

the ground truth keypoints.

Token Pruning Our architecture introduces a token pruning strategy that
reduce the number of tokens before the recognition transformer encoder. Since
the space and time complexity of the attention mechanism of the transformer
is quadratic with the number of input tokens, reducing the size of the input
can yield more efficient training and inference times. This approach to reduce
the number of tokens is based on the assumption that the features relevant to
recognize text are local for each text instance, while the surrounding areas are
uninformative. This strategy employs the detected text areas from the detection
branch to discard part the visual features that come from the CNN. Any visual
features from z1 that does not overlap with a bounding box are discarded, since
they probably do not contain textual information (Figure 4 shows how features
that are not overlapping any text detections get discarded). The pruning is
applied after adding a 2D positional encoding [1,38] because we need to preserve
the relative position of the tokens on the original feature map. Our experimental
results show how the pruning mechanism does not affect the performance of
the network, since all the relevant information for the recognition head is being
preserved. This process is also fully end-to-end trainable.

This joint pruning and recognition strategy can be seen akin to two-stage
architectures such as FOTS [28] or Mask TextSpotter [24, 33], where each text
detection is used to crop and recognize the RoI in the feature map. Our approach
differs in that we do not crop and recognize the RoIs one by one. Instead, we
remove the non-informative areas of the image features and perform the recog-
nition in parallel. For a more fair comparison between both approaches, we also
implemented a classic Two-Stage version of our model that performs RoI crop-
ping and recognition with a transformer encoder. In our experimental section we
show how the pruning approach yields faster training and inference times w.r.t.
the Two-Stage version.
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Fig. 4: Our pruning strategy discards tokens of the image that do not contain
text information. Using the bounding boxes detected as a guide, we create a
mask that has the size of the output feature map (which we abstractly represent
as a grid over the original image), and use it to discard features that are outside
of text regions. If the detector fails to localize a text instance, it will not get
recognized.

Text Recognition Branch The recognition head is principally composed of
a transformer encoder [48]. In our experiments we have trained two different
versions of the network, a Small version with 4 encoder layers and a Base version
with 8 layers.

The inputs to the transformer are the up-scaled features outputted by the
convolutional backbone in the form of a flattened vector of tokens. After ap-
plying the token pruning described in the previous section, the visual features
are inputted into the transformer encoder. The self-attention mechanism of the
transformer flexibly combines information around each cell of the input features
to generate a latent representation grid.

After applying the self-attention, the recognition head generates a text pre-
diction for every token, where the output is encoded as a maximum of M charac-
ters. We apply a softmax activation function over the character dimension to gen-
erate per-character confidences, obtaining final predictions of size M ×C, where
C is the size of our alphabet. The loss of the recognition branch Lrecog is the
cross-entropy loss between the predicted character confidences and the ground
truth one-hot vector of each character. Like the offset regression Ô and bound-
ing box height and width regression, the loss for each word is calculated at the
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center of the words, while the predictions around it do not contribute to the loss.

The final optimization objective of the network is defined by the addition of
the four previous losses:

L = Lk + Loff + λsizeLsize + Lrecog (1)

where λsize is used to scale the bounding box regression loss, we set λsize =
0.1 like in the original CenterNet paper.

Fig. 5: Visualization of the predicted word grid generated by the recognition
head. The overlaid mask shows the confidence for each one of the predicted
words (in this example, the prediction in blue represents the final recognized
word). During training, the loss is only taken into account in the center of the
word, while the areas around it are ignored.

3.2 Training Details

The model was trained using two NVIDIA A40, the resolution during training
was 1024 × 1024 with a batch size of 32. The optimizer used in all the cases
was AdamW [32], with a gradual learning-rate warm-up of 1000 iterations. The
model is pre-trained with SynthText for two epochs, with an initial learning rate
of 1e−4 with no learning rate decay. Next, the model is trained using a combined
dataset of ICDAR13 [17], ICDAR15 [16], ICDAR17 [35], COCO-text [49] and
TextOCR [47] for 40 epochs at the same learning rate. After 20 epochs we decay
the learning rate to 1e−5. Some datasets, such as ICDAR17, include text in
different scripts than Latin, we do not take into account these text instances.
During training, we use the ground truth detections to guide the token pruning.

4 Experiments

4.1 Text Detection and Recognition Datasets

We have evaluated our model on ICDAR13, ICDAR15, and Total-Text. On IC-
DAR13 we use the standard evaluation protocol proposed by the authors. The
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datasets ICDAR15 and Total-Text feature rotated quadrilaterals and irregular
polygonal annotations respectively. To be able to compare our method in these
datasets, we adopt the evaluation protocol proposed by TTS [19], where they
propose to use the horizontal bounding box version of the ground truth anno-
tation to evaluate the predictions. Their experimental results show that this
evaluation strategy has a minor effect on the final results.

In the ICDAR15 and Total-Text datasets we used a single input resolution
of 1400 and 2000 respectively. For ICDAR13 we use two different scales of 2000
and 500 pixels to better deal with text at different sizes.

Results Table 1 shows end-to-end detection and recognition in quantitative
results on ICDAR15. On this dataset our model manages to perform on par
with the latest state-of-art models, which shows how the recognition branch is
able to successfully deal with oriented text. Our model is also able of significantly
higher inference speeds than the latest models and it is only surpassed by FOTS,
which our model manages to widely surpass on accuracy.

Method
IC15

FPS
S W G

FOTS [28] 81.1 75.9 60.8 22.6
Boundary [50] 79.7 75.2 64.1 -
TextPerceptron [41] 80.5 76.6 65.1 8.8
ABCnet [31] 82.7 78.5 73.0 10.0
TextDragon [7] 86.2 82.0 68.1 -
MANGO [40] 85.4 80.1 73.9 4.3
DEER [18] 82.7 79.0 75.6 -
SwinTextSpotter [13] 83.9 77.3 70.5 1.2
TESTR [53] 85.2 79.4 73.6 2.0
TTS [19] 85.0 81.5 77.3 -
Ours 84.6 80.2 71.6 18.0

Table 1: End-To-End results on ICDAR15. The results reported were obtained
using the Small version of our network.

In Table 2 we show the results for the datasets ICDAR13 and Total-Text.
Our model obtains good results using two scales, achieving competitive results
with the latest models. When using a single scale the performance drops, but
still maintains good results. Despite never seeing the training set of Total-Text
(a dataset mainly focused on rotated text), our model also obtains good results
on it.

Finally, figure 4.1 shows qualitative examples of word detection and recog-
nition with different types of distortions. Our model is capable of dealing with
different types of distortions such as rotations or curvatures thanks to the trans-
former encoder-based recognizer.
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Method
IC13 Total-Text

S W G None full

FOTS [28] 88.8 87.1 86.0 - -
Boundary [50] 88.2 87.7 84.1 65.0 -
TextPerceptron [41] 91.4 90.7 85.8 69.7 78.3
ABCnet [31] - - - 70.4 78.1
TextDragon [7] - - - 75.8 84.4
MANGO [40] 93.4 92.3 88.7 72.9 83.6
DEER [18] - - - 74.8 81.3
SwinTextSpotter [13] - - - 74.3 84.1
TESTR [53] - - - 73.3 83.9
TTSpoly [19] - - - 75.6 84.4
TTSbox [19] - - - 75.9 84.5
Ours 85.2 83.4 78.3 61.5 72.1
Ours TS 92.3 89.2 87.2 64.2 74.6

Table 2: End-To-End results on ICDAR13 and Total-Text.

(a) Examples of successful detection and recognition with the Small model.

Fig. 6: Our transformer-based approach manages to successfully perform detec-
tion and recognition with horizontal bounding boxes. The models successfully
recognizes the text with different types of distortions.
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4.2 Token Pruning

In this section we evaluate the performance gains of our token pruning approach.
We also compare it with an alternative Two-Stage variation of our model. In this
version, the locations of the detection branch are used to crop the image features
overlapping the bounding boxes. The transformer encoder performs recognition
for each one of the cropped regions, but unlike our architecture this does not
happen in parallel. The three versions of our architecture were trained using the
Small (with 4 attention layers) and Base (with 8 layers) sizes of the transformer
encoder.

In Table 3 we compare the three variants of our architecture trained under
the same configuration. As seen in the table, the three variants offer similar
quantitative results on ICDAR15. The token pruning and Two-Stage variants
considerably reduce the number of MAC operations (one multiplication and
one addition) with respect the model with no pruning. At a resolution of 2000
pixels, the pruning mechanism removes an average of 91% of non-informative
tokens, which reduces 95% of the operations in the transformer encoder. The
number of operations remains similar between the Small and Base versions,
which allows our pruning approach to maintain almost the same number of
FPS. In the Base version of our model, the reduction represents almost half of
the overall operations of the network (from 510 to 279 GMACs).

Since the recognition happens in parallel in the fully connected attention
mechanism of the transformer encoder, the proposed pruning version is slightly
more computationally expensive than the Two-Stage version. However, the par-
allelization of the transformer operations allows the pruning version to obtain
faster inference speeds. The Base version of our model has almost the same num-
ber of operations as the Small one, and reaches similar FPS during inference.

Training The benefit of this parallel approach is that is easier to batch the
recognition during training, which results in reduced training times. In the right-
most column of Table 3 we can see the number of iterations per second for all
the variants of our model using the same configuration (an input resolution of
1024×1024 and a batch size of 32). Using token pruning reduces 40% the training
times for the Small model while in the Base model the reduction is 76%.

Image Resolution A bigger image size has a quadratic impact on the number
of operations of the encoder head. In Figure 7 we can see the effect of input image
size on the FPS of the three variations during inference. Thanks to the great
reduction in number of operations of the pruning, our proposed strategy achieves
faster inference speeds than the two variations of our model. The gap between
the Small and Base non-pruning version (red lines) is considerably bigger than
the gap between the two versions of our Pruning approach, which is between 1
and 2 FPS depending on the size.
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Recognition Layers S W G FPS GMACs it/s

No Pruning 4 79.3 77.1 74.1 12 394 0.84
Two-Stage 4 79.5 77.2 74.5 15 278 1.06

Pruning 4 79.4 77.1 74.7 18 282 1.18

No Pruning 8 79.1 77.2 74.2 8 510 0.65
Two-Stage 8 79.1 77.4 74.4 12 279 1.02

Pruning 8 79.3 77.3 75.1 17 284 1.15

Table 3: Performance comparison between using token pruning, no pruning and
Two-Stage for inference. The models were evaluated on ICDAR13 at a resolution
of 2000 pixels. The MACs count includes the operations of the convolutional
backbone (which totals 276 GMACs for the used image size). The rightmost
column also shows the number of iterations per second during training. The
batch size is 32 and the resolution used is 1024× 1024.

750 1000 1250 1500 1750 2000 2250 2500
Image Size

10

20

30

40

50

60

FP
S

No Pruning Small
Pruning Small
Two-Stage Small
No Pruning Base
Pruning Base
Two-Stage Base

Fig. 7: Effects of the input image size on the FPS for the different variants of
our model. The solid line shows the performance using the Small transformer (4
encoder layers) while the dashed line shows the performance of the Base model
(8 encoder layers).

5 Conclusions

In this paper we have introduced a novel strategy to improve the efficiency
of transformer-based architectures for scene text recognition. Our token prun-
ing mechanism, which has been specially designed for scene-text detection and
recognition, effectively decreases training and inference times of the network.
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We have tested this approach on our own transformer-based architecture, which
has been tailored to achieve a balance between speed and accuracy. Thanks to
the proposed pruning mechanism, our model achieves fast inference speeds while
being competitive with the state of the art.
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