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Abstract—Spatial verification is typically employed to check
the spatial consistency among matched local features and to
remove outliers. However, when looking for multiple instances of
the query within a target image, RANSAC algorithms which are
widely applied in many one-to-one matching applications might
fail due to the large proportion of “outliers” - correct matches
corresponding to other instances. On the other hand, geometrical
verification methods are more robust to outliers but usually suffer
from high computational costs. In this paper, we introduce a novel
two-step line verification method which is more flexible than
existing methods and leads to lower computational complexity
especially when multiple instances of a query are sought. We
study this approach within an information extraction scenario,
where the objective is to locate document structures indicative of
certain type of information (e.g. different records on invoices).

I. INTRODUCTION

Local keypoint matching based methods such as SIFT,
SURF and MSER have achieved great success in many com-
puter vision applications. However, local features might be
mismatched if the feature description is not discriminative
enough. Spatial verification is usually applied as a post pro-
cessing technique to filter out the matches that are inconsistent
with the dominant transformation between the query and target
images. Such a refinement on matched local features has been
widely employed for image retrieval [1], object detection [2]
and image stitching [3] for example.

The RANSAC algorithm [4] has met great success because
it efficiently converges to the dominant spatial transformation
for various applications especially for one-to-one matching
scenarios (e.g. image stitching, duplicate image detection etc.)
However, since RANSAC computes the spatial consistency
among the matched features in a global manner, the algorithm
might fail when multiple instances of the query are present in
the target image. In such cases, a large number of outliers,
corresponding to correct matches with instances other than
the dominant one, is inevitable. This scenario is of particular
importance to document image analysis, as in encompasses a
number of information extraction tasks, ranging from word and
symbol spotting to the retrieval of structurally similar areas in
document collections. In all such applications, the existence
of multiple instances of the query on the same page is to be
expected.

An alternative to RANSAC like algorithms for comput-
ing the spatial consistency among matched local features, is
geometrical verification techniques resulting in much higher
flexibility. They generally consider local geometry by taking

a specific combination of local matched points such as lines
and triangles. The transformation relations are then computed
based on local geometry while the final transformations are
determined by votes in parameter space. Geometrical verifica-
tion methods allow different transformations and thus are more
favourable for multiple instance retrieval scenarios. However,
since the geometrical (line/triangle) verifications compute any
combination of two or three local matched points, their com-
putation cost (square or cubic) is usually much higher than
RANSAC.

In this paper, we propose a two-step line verification
strategy for the multiple instance matching scenario. We apply
this strategy to structural based focused retrieval in an ad-
ministrative document retrieval scenario. The matched points
are first divided into groups according to the transformation
estimated by each pair of points in linear time. In the second
step, we employ a line verification algorithm to check the
spatial consistency for each group of matched points. In such a
two-step manner, only the lines related to the two points from
the same group are employed for the transformation estimate
while the lines linking points from different groups are ignored.
Consequently, for multiple matching scenarios, the two-step
line verification holds lower computational complexity than
the conventional one and is more robust than RANSAC since
the transformations are estimated by local lines.

The rest of this document is organized as follows. Sec-
tion II will introduced the current algorithms to verify spatial
consistency among the matched correspondences while a novel
two-step strategy for line verification is proposed in Section III.
Section IV will explain an pair-wise retrieval framework to
obtain the matched local feature points. The proposed verifi-
cation method is tested on an invoice dataset in two different
retrieval scenarios in Section V. The conclusions of our work
are presented in Section VI.

II. SPATIAL VERIFICATION

A spatial verification process is usually employed to esti-
mate the transformation relations or to filter out any “bad”
matches (outliers) that are inconsistent with the estimated
transformation. Since invoice images employed in our research
are clean and upright, shearing is seldom observed between
images. Consequently, we only consider transformations in 2-
D space. In such cases, the transformation relations generally
can be formulated as a transformation matrix as follows.
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where α, θ and (tx, ty) represent the scale change, rotation
and translation respectively.

The spatial verification process takes n points pairs
P = {(p1, p1′), (p2, p2′), . . . , (pn, pn′)} as inputs, whereas
(p1, p2, . . . , pn) and (p1′, p2′, . . . , pn′) represent the location
of the matched points for the query and target images respec-
tively and n denotes the number of the matched points. It
estimates the parameters for the transformation matrix shown
in Equation 1. Various methods of spatial verification, such as
the RANSAC and geometrical verification, have been intro-
duced for many applications to filter out the matches that are
inconsistent with the estimated transformation.

A. RANSAC algorithm based method

RANSAC is a generic algorithm that deals with outliers.
It randomly samples a specific number of matched points as
an initial census/pool. It then iteratively performs the two
following steps: 1) estimate the value of parameters α, θ and
(tx, ty) for the transformation matrix using the current census;
2) update the census by adding more points from location
pairs P if they are consistent with the estimated transformation
and remove the ones that are not consistent with the new
transformation from the previous census. The two steps are
repeated until the algorithm converges or the given maximum
iterations is reached.

Generally, the RANSAC algorithm makes an initial as-
sumption on the transformation, adds new “inliers” from all the
observations given the assumption and updates the assumption
according to the updated group of “inliers”. Hence, through the
two iterative steps, RANSAC is capable of reaching a stable
point in parameter space through iterative “minor” revisions.
However, when a large proportion of outliers appear in given
location pairs, the RANSAC algorithm might fail to obtain
the right transformation estimate. The reason is that RANSAC
checks the spatial consistency for all matches in a global
manner and thus the right solution could easily be hidden by
a large amount of noise.

B. Geometrical Verification

Geometrical verification refers to an alternative set of
methods for verifying the spatial consistency of the matched
points. Unlike the global approach employed in RANSAC,
geometrical verification checks the spatial consistency based
on a small amount of matched points. Limited by the compu-
tation complexity, the number of local points is usually set to
2 or 3 which corresponds to a line or a triangle verification
respectively.

As shown in Figure 1, triangular geometrical verification
compares the corresponding triangles from query and target
images. The majority estimations are returned as the final
transformations between the query and target images. When
there is only a small number of matched points, all com-
binations of 3 matched points are employed to generate the
triangles. However, the computational cost of such a triangular
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Fig. 1. Geometrical verification by checking the consistency between
triangles.

verification process is O(n3) where n is the number of the
matched points. Hence, it becomes infeasible to apply when n
grows.

Common strategies to reduce the computation time are: 1)
sample a subset with small size from all the matched points.
2) find a reference matched point that appears in all the target
images and only compute the triangles related to the reference
point. Thus the computational cost is reduced to O(n2). For
example, the number of effective matched points is limited
to 25 in [5] while other matches with large distance are not
employed. However, as shown in Figure 2, we seek to retrieve
all the similar image parts from the dataset while multiple
instances are expected within the same target image. Hence,
it is not feasible in our case to limit the number of matches
into a proper range. In [6], the computational complexity of
line verification is reduced to O(n) by first finding a reference
point and only considering the lines related to the reference
point. Nevertheless, in a focused retrieval scenario where the
query corresponds to a specific area of the images, a reference
point can not be determined at the page level. Consequently,
neither the strategy discussed above serves our situation since
there might not exist a stable reference point that appears in
all the counterparts.

(Query Image) (Target Image)

Fig. 2. The example of matched points (key-region pairs in our case). The
blue bounding boxes correspond to the key-region pairs while the big red and
black ones indicate the focused query and its expected matches respectively.
Only 20% of the overall matches are shown here for simplicity.

Line verification is a cheaper option for geometrical ver-
ification. Like triangular verification, it takes matched X-
Y locations and locally estimates the transformation. The
difference between these two methods is that the line based
method computes the estimation based on lines between points.
As shown in Figure 3, the triangle employed in triangular ver-



ification boils down to three independent lines which are used
to estimate three separate transformations ({αi, θi, txi, tyi, i =
1, 2, 3}) for the matched points. At the end, the transformations
are determined by finding the ones that are supported by a large
number of lines (observations).

Compared to triangle verification, line verification is less
expensive since its computational complexity is O(n2), while it
is more flexible than triangle verification. Assume the transfor-
mation shown in Figure 3(a) is the expected one but in reality
the location of matched point 1 is shifted as shown in Figure
3(b). In such a situation, triangle verification would not lead to
the expected transformation. However, line verification still can
give one supporting evidence (line connecting point 2 and 3) to
the expected transformation even though the transformations
estimated by the other two lines are not consistent.
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Fig. 3. Geometrical verification by check the relations between lines and
estimate the transformation for the matched points. The dotted lines show
the mapping relation of lines. The blue dotted lines correspond to expected
transformation estimation and the red dotted line indicate the inconsistent ones.

III. TWO-STEP LINE VERIFICATION

Line verification is much cheaper than triangle verification.
However, it is still unaffordable when multiple instances are
expected from the same target image which usually leads to a
large number of matched points.

In this section, we will introduce a two-step strategy for
the line verification method. As shown in Figure 2, when
multiple instances are expected in the target image, there is
a large number of correct matched points that will positively
contribute to the line verification process. However, it is
not necessary to employ all the combinations of the points
to generate the lines. For instance, the line that links one
point from the first bounding box in the target image and
another point from another bounding box will not lead to any
valid transformation estimation. Consequently, we propose to
perform line verification in a two step manner as follows.

• Step 1: we first identify the tentative bounding boxes
(shown in Figure 4 as the blue rectangles) to divide
the matched points into several groups. The tentative
bounding boxes are obtained by transforming the
query bounding box into target image. Each pair of
matched points is employed to compute the corre-
sponding transformation parameters while the scale
α = Areai/Areai′ and the rotation θ = Orienti −
Orienti′ where Areai and Orienti represent the
scale and the orientation of the ith matched point in
the query and Areai′ and Orienti′ correspond to the
counterparts in the target image. The translation is
determined by the location of the two corresponding
matched points. The estimated transformations that
at least fit Thre1 points are selected as tentative
bounding boxes (Thre1 is experimentally set to 10.)

• Step 2: line verification is employed to precisely check
the spatial consistency among the points inside each
tentative bounding box. Those bounding boxes are
updated by computing the transformation that fits the
largest number of matched lines (inliers). As with step
1, we set a threshold Thre2 on the number of con-
sistent lines (inliers). When Thre2 < 3, the estimated
transformation is removed due to insufficient inliers.
We also test the performance on repeating step 2 one
time more to refine the result.

Compared to conventional line verification, the two-step
version is much cheaper with average computational complex-
ity O(n+ k ∗ (nk )

2) where k denotes the number of tentative
bounding boxes found in step 1. The exclusion of lines outside
the bounding boxes leads to a more robust estimation of the
transformation due to fewer incorrect lines

Tentative Bounding Boxes Verified Bounding Boxes

Fig. 4. Example of two-step line verification results.

IV. RETRIEVAL PIPELINE

To obtain the matched points, we follow the retrieval frame-
work presented in [7]. The DTMSER algorithm is employed to
interpret each document as a key-region tree T (R,E, l) where
R = {r} is a set of tree nodes corresponding to key-regions
that roughly correspond to the structural elements of the docu-
ment (letters, words, paragraphs). E = {e} is a set of directed
edges in the tree and represents inclusion relations between
structural key-regions where e = (r i, r j) and r i, r j ∈ R.
Each key-regionr is described by two different visual fea-
tures: geometrical feature fc(r) and SIFT feature fg(r). A
consecutive quantization processl(r) = lg(fg(r))×lc(fc(r)) is
employed to assign a numerical label to each key-region while
lg and lc represent the quantization function for the two types
of visual features respectively. Afterwards, all the key-regions
are stored into a spatial database where spatial index are built
to facilitate querying the spatial relation (e.g. inclusion, top/left
of etc.) between key-regions.

During query time, based on each edge e = (ri, rj) ∈ E
of the key-region tree, we cast a pair-wise key-region retrieval
process and the spatial database returns the matched pairs
{(r′ik, r′jk), k = 1, 2, . . . , n} whereas l(r′ik) = l(ri) and



l(r′jk) = l(rj) and meanwhile inclusion relations is observed
in (r′ik, r′jk) as well.

V. EXPERIMENTAL RESULTS

A. Dataset

We tested the proposed method on the focused document
retrieval scenario based on an invoice dataset consisting of
4109 images from 249 providers. The queries correspond to
specific areas (e.g. address blocks, headlines, shopping item
records etc.) rather than the full-page of the document image.
We define 20 focused queries that correspond to 2 groups (10
in each group) according to the expected similarity: structure-
focused retrieval and visual-focused retrieval.

• Structure-focused queries – queries aim at retrieving
all the structurally similar parts while their exact
textual content may change. For example, in our
experiment, the invoice items (see Figure 5) that were
employed to simulate this type of queries may vary
in item name, quantity and price while the structural
similarity remains.

• Visual-focused queries – queries that aim to exact
visual matches where the objects to be matched are
exactly reproduced in the target images and thus do
not allow content change. In the experiment, we take
the invoice headline (see Figure 6) as query and search
the matches in the dataset.

We manually created ground truth by specifying all
the bounding boxes that corresponding to structure-focused
queries or visual-focused queries. At query time, the trans-
formations are estimated according to the location of the
points matched by RANSAC and the proposed line verifica-
tion. The query bounding box highlighting the focused area
is then transformed into the target image and the overlap
area ratio criteria between the transformed bounding box and
ground truth bounding box is employed to determine if the
retrieved matches are correct or not. Inspired by the protocol
of PASCAL [8], we set the threshold for this criteria to 50%.
We employ Mean Average Precision (MAP) to evaluate the
performance of the considered methods.

Structure-focused Queries

Fig. 5. Samples of the structure-focused queries.

Visual-focused Queries

Fig. 6. Samples of the queries that seek for visual-focused matches from the
collection.

B. Experimental Results

As explained previously, line verification consists of two
steps: tentative bounding box estimation by points and line
verification based on the lines within each tentative bounding
box. We also tested the effect of applying one extra step of
the line verification process to further refine the verified bound
boxes. LineVeri1 and LineVeri2 stand for performing line ver-
ification for one and two times respectively while RANSAC
corresponds to the performance achieved by RANSAC algo-
rithm.

TABLE I. MAP PERFORMANCE OF SPATIAL VERIFICATION METHODS
ON structure-focused QUERIES.

{100,1} {25,4} {10,10} {4,25} {1,100}

RANSAC 0.6771 0.6805 0.6062 0.5780 0.5519
LineVeri1 0.7383 0.7970 0.6959 0.7234 0.6110
LineVeri2 0.7400 0.8243 0.6887 0.7246 0.6076

We also applied the parameter verification process to find
the optimal configuration on the number of centroids for the
two type of visual features while the overall codebook size
is fixed to 100. The first row of the table corresponds to
configurations of {ngeom, ndes} that represent the number of
codewords of the types of visual features respectively. As
shown in Table I, the optimal parameters (ngeom = 25, ndes =
4) achieve the best performance for both line verification and
RANSAC method. For structure-focused queries, giving more
importance (more codewords) to SIFT feature generally results
in worse performance since SIFT feature is very discriminative
and not robust on content change.Giving more importance to
geometrical features which is robust on content variation would
lead to less discriminative power of the visual features and thus
in turn let the structural relations between key-region play more
important role.

Compared with RANSAC, line verification generally
achieves 6 ∼ 14 percent better performance. The reason
for such an improvement is that RANSAC computes the
transformation in a rigid global manner and thus fails to
retrieve the true positives when a large proportion of outliers
appear. By contrast, line verification separately estimates the
transformations by each of the local lines and hence is more
robust to outliers.



To better understand the behaviour of the methods, we
analyze the precision and recall separately. As shown in
Figure 7, RANSAC would generally achieve higher precision
but significantly lower recall than the two line verification
methods. Comparing LineV eri1 and LineV eri2, a remark-
able improvement on precision is observed when one extra
verification process is applied (see the precision of the query
#1, #4, #6, #9, #10). Meanwhile, as shown in 8, such a
refinement does not necessarily result in a notable decrease
in recall performance. Regarding to the recall of the retrieved
result, line verification methods consistently achieve much
higher recall performance than RANSAC. Such significant
enhancement on recall leads to around 14% improvement on
MAP performance.
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Fig. 7. The precision performance comparison of spatial verification methods
for the structure-focused queries.

Apart of the structure-focused queries, we also test the
performance of the methods for retrieving the visual-focused
matches. As shown in Table II, the performance of the retrieval
with RANSAC has already reached a near-perfect state (the
MAP is 0.9938). Line verification makes a small but significant
improvement over RANSAC(from 0.9938 to 0.9999).
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Fig. 8. The recall performance comparison of spatial verification methods
for the structure-focused queries.

VI. CONCLUSIONS

In this paper, we proposed a two-step line verification
method to verify the spatial consistency of the matched points.
We demonstrated that the RANSAC algorithm might fail to
find the right transformations when searching for multiple

TABLE II. MAP PERFORMANCE OVER THE FOCUSED QUERIES THAT
CONCENTRATE ON BOTH VISUAL AND STRUCTURAL FEATURES

(VISUAL-FOCUSED).

{100,1} {25,4} {10,10} {4,25} {1,100}

RANSAC 0.9253 0.9698 0.9938 0.9831 0.9921
LineVeri1 0.9828 0.9828 0.9996 0.9994 0.9961
LineVeri2 0.9873 0.9889 0.9998 0.9999 0.9964

instances due to a large proportion of outliers. Comparing with
the global manner employed in the RANSAC algorithm, line
verification verifies the spatial consistency locally and is more
flexible in dealing with the “outliers” caused by the location
variation of the matched points and thus achieves remark-
able improvement especially for structure-focused queries. We
demonstrated that the line verification methods achieves much
higher recall performance with reasonable loss on precision.

The main disadvantage of line verification is that its cost
is O(n2). However, our system seeks for multiple instance
search in single target images and thus leads to a larger number
of matched points. Even though we managed to reduce its
cost to O(n + k(nk )

2) through a two step strategy, it is still
much more expensive than RANSAC. Hence, in the future,
it would be important to work on more efficient algorithms
with a computational cost closer to O(n). One possible way
is to identify a reference points (e.g. geometrical center of the
tentative bounding box) and only employ the lines related to
the selected reference points.
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