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Abstract

In this paper we present a method to locate and recog-
nize graphical symbols appearing in real images. A vector-
ial signature is defined to describe graphical symbols. It is
formulated in terms of accumulated length and angular in-
formation computed from polygonal approximation of con-
tours. The proposed method aims to locate and recognize
graphical symbols in cluttered environments at the same
time, without needing a segmentation step. The symbol sig-
nature is tolerant to rotation, scale, translation and to dis-
tortions such as weak perspective, blurring effect and illu-
mination changes usually present when working with scenes
acquired with low resolution cameras in open environments.

1. Introduction

The present resolution of digital cameras integrated on
cell phones or PDA devices makes camera-based document
analysis viable, and interesting applications are emerging.
Driving assistance, blind person aid systems, image re-
trieval and robotics are a few examples of possible appli-
cations. In all these use cases, text and graphics detection
and recognition appear as one of the central problems to
solve.

In the last years a growing attention has been given to
text detection in real environments, and promising results
can be appreciated in [5]. Text recognition has been a topic
of interest since the dawn of document analysis and com-
mercial OCR applications are offering good enough recog-
nition rates. Nowadays, combining both text detection and
text recognition, i.e. an application able to “read” not a
scanned document but a real image, is feasible.

Contrary to text, graphical symbols, which are usually
designed to guide passengers and pedestrians through trans-
portation facilities and other sites of international exchange,
can address a universal communication need. Graphics
recognition is also a wide topic of interest in the document

analysis field. A good review on shape representation and
description techniques can be found in [11]. But, even if
most of these techniques achieve great recognition rates,
they are only applicable to recognize pre-segmented shapes.
We consider that graphics detection in real environments is
still an unexplored interesting research topic. A compact
representation of expressive features –signature– combined
with a voting scheme, is the used strategy when trying to do
what is known as symbol spotting. In this paper we study the
problem of detection of zones of interest in real images hav-
ing a high probability to find the queried graphical symbol.
Symbol spotting approaches arise to face up the paradigm of
recognition and segmentation: Do we need to recognize for
segmenting or do we need to segment to recognize? Sym-
bol spotting tries to detect symbols while recognizing them
at the same time. Obviously, this kind of techniques will
achieve less recognition rates than shape descriptors work-
ing with pre-segmented shapes.

Most of shape descriptors used for object detection and
recognition are based on pixel features. Pixel primitives en-
tail robustness to different degradations and distortions, but
also have a high complexity. But, as we can appreciate in
Fig. 1, graphical symbols are composed of synthetic simple
geometric shapes usually drawn on an uniform background.
In that case a vectorial signature involving a lower com-
plexity and coping with geometric information expressed in
terms of length and angles is a suitable approach.

Figure 1. Different Information Symbols
Present in Airports.

To detect symbols appearing in real images we use a sim-
ilar approach to Stein and Medioni’s method [9], where a
polygonal approximation of the contours of a real image



is computed. The relevant features to discriminate graph-
ical symbols taken into account are the angles and lengths
of the chains of adjacent segments –polylines–. However,
when working with vectorial data, some drawbacks have to
be faced. The invariance to the number of segments com-
posing a polyline, the invariance to geometric transforma-
tions, and the robustness to distortions must be guaranteed
to develop useful applications.

The remainder of this paper is organized as follows: we
introduce in the next Section how the graphical symbols
are represented and how we model the discriminative signa-
ture. In Section 3, the symbol spotting process, composed
basically of the signature similarity measure and a voting
scheme, is presented. We provide the experimental results
in Section 4. Finally conclusions are presented in Section 5.

2. Vectorial Signature for Symbol Detection

Graphical symbols found in real environments are usu-
ally filled closed shapes drawn on an uniform background,
as we have seen in Fig. 1. They are composed of few re-
gions having closed contours. We describe then a symbol as
the combination of several closed contours, approximated
by the corresponding set of polylines.

Let us further detail how the symbols are represented and
encoded in a suitable way to be compared afterwards and
how the vectorial signature to discriminate polylines is de-
fined.

2.1. Symbol Representation

A symbol is described by a vectorial signature in terms of
basic primitives extracted from image contours. We extract
the contours of the image with a Canny edge operator. Then,
a polygonal approximation of these contours is computed
using the Rosin and West algorithm [7]. Afterwards, each
chain of segments resulting of the polygonal approximation
is grouped as a polyline instance. These polylines are the
features which describe the symbol to be recognized.

Formally, let P = {s1...sn} be a polyline composed of
n segments si. Each segment si is attributed with the tuple
(li;φi), where li denotes the length of the segment si and
φi denotes the angle between si and si−1 in the counter-
clockwise direction. A symbol is represented in terms of its
building p polylines and denoted as S = {P1...Pp}. We can
see an example of this symbol representation in Fig. 2.

2.2. Proposed Signature Model

One of the major problems of working with vector
based features is that in presence of noise or distortion, the
raster-to-vector process can result in very different segment
chains. In order to be invariant to the number of segments

Figure 2. Length and Angle Symbol Repre-
sentation.

composing a polyline, the vectorial signature is defined in
terms of accumulated measures.

Given a polyline P with n segments, a vector of accu-
mulated lengths � normalized by the total length |P |, and a
vector of accumulated angles Θ, are computed:

�(i) = 1
|P | ×

∑i
k=1 lk

where 1 ≤ i ≤ n

Θ(i) =
∑i

k=1 φk

(1)

Let us then define a mapping function m(�(i)) = Θ(i)
assigning the corresponding accumulated angle at each
value of �(i). As we work with closed contours m(0) = 0
and m(1) = 2π. However m(x) function can not be used
as symbol signature as it is, since the use of accumulated
measures provokes dependence of the first segment choice.

To guarantee invariance to rotation the idea is to compare
the m(x) functions to the accumulated length and angle dis-
tributions of an ideal circle, denoted as c(x) and defined as:

c(x) = 2πx ∀x ∈ [0, 1] (2)

Then, we define the symbol signature f(x) as follows:

f(x) = m(x) − c(x) ∀x ∈ [0, 1] (3)

The analysis of the differences between length and accu-
mulated angles of a closed shape and an ideal circle, gives
information about the convexities and concavities of the an-
alyzed polyline, and also guarantees invariance to rotation
and independence of the reference segment choice.

As we can see in Fig. 3, the two shapes to compare
are rotated, so the polygonal approximation step establishes
two different starting segments. The use of accumulated
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Figure 3. Vectorial Signature. (a) and (b) Two
Rotated Versions of the Same Shape. (c)
m(x) Length and Accumulated Angles Signal.
(d) f(x) Shifted Signatures Due to Rotation.

measures provokes that the two m(x) functions achieve dif-
ferent angle values at a certain covered length. When we
compute the f(x) function in relation of the theoretical an-
gle evolution of a circle, we keep the advantages of the ac-
cumulated metrics (invariance to scale and number of seg-
ments forming the polyline) and the two signatures are com-
parable since they are only shifted in the x axis.

This description technique copes with a similar geomet-
ric information to the well known Curvature Scale Space
descriptor proposed in [6]. CSS describes shapes in terms
of the expressive curvature inflection points which is the
same information we extract without the need to compute
the whole scale space.

If the similarity measure between signatures can cope
with cyclic shifts, the invariance to the choice of the starting
segment and rotation is guaranteed. Let us further describe
in the next section how the similarity measure is defined and
how the spotting process is done.

3. Symbol Spotting

The proposed symbol spotting process is based on the
presence of the polylines composing a symbol in a given
region of an image. In this section we introduce the simi-
larity measure between vectorial signatures and the voting
scheme, which forms clusters of polylines to segment the
regions of interest.

3.1. Similarity measure

A suitable similarity measure between vectorial signa-
tures has to be defined. We need a similarity measure which
is able to cope with circular shifts and which consider the
trend of the feature vectors.

A normalized cross correlation [3] is often used as a tem-
plate matching measure. Let g(x) be the signature of the
model polyline which we want to find between all the poly-
line signatures f(x) appearing in the image. The normal-
ized cross correlation between f(x) and g(x) is computed
as:

f ◦ g(x) =
∫ +∞

−∞
f(α)g(x + α)dα (4)

Since the f(x) vectorial signatures of cyclic shapes start
and end at the same values, to consider f(x) as a cyclic
signal, we define F (x) as the concatenation of several f(x).
The resulting cross correlation between the template g(x)
all over F (x) allow us to achieve the invariance to the first
segment choice and consequently to rotation. The similarity
measure is then defined as:

d = max(F ◦ g(x)) (5)

Using the two shapes shown in Fig. 3, we can appreciate
in Fig. 4 how the use of the proposed vectorial signature and
the similarity measure allow to find a match between F (x)
and g(x), assigning a high similarity measure between both
shapes.

Figure 4. Matching g(x) Over F (x) Using the
Normalized Cross Correlation.

3.2. Voting Scheme

Voting schemes are a common strategy when trying to
segment and recognize at the same time. Geometric Hash-
ing [10] or the Generalized Hough Transform [1] are well
known examples of how this kind of methods work. We
can find in the literature several approaches which combine
a compact feature representation and voting schemes, used
for example for image retrieval applications [4] or for sym-
bol spotting [8] purposes. Since a symbol is composed of



Table 1. Achieved Recognition Rates of Dif-
ferent Shape Descriptors Using the MPEG-7
Database, Extracted from [2].

Descriptor CSS Wavelet Eigenvectors
Rec. Rate 75.44 67.76 70.33
Descriptor Zernike DAG Our Method
Rec. Rate 70.22 60 64.29

several polylines, the zones where a symbol is present re-
ceive a high number of votes, forming clusters allowing to
segment these zones. Let us detail how we proceed to for-
mulate the voting scheme.

Once the similarity measure between polylines has been
formulated, we need to use a voting scheme to cluster the
zones of an image where there is presence of the different
polylines composing a given symbol. Each image is divided
on a grid partition and each polyline appearing in the image
cast a vote on its neighboring bins, proportionally to the
similarity measure to the closest model polyline. The bins
accumulating the higher number of votes are the zones of
interest of the image where it is more probable to find the
queried symbol. The polylines falling into these activated
bins and having a good enough similarity measure are con-
sidered as being part of the queried symbol.

The use of voting schemes allow to reject isolated poly-
lines similar to a part of the queried symbol but not sur-
rounded by the rest of parts of the symbol. On the other
hand, if one of the polylines composing a symbol is so dis-
torted that the similarity measure miss it, the rest of poly-
lines composing it still contribute to attach importance to
the zone of interest, and the symbol can be spotted in de-
spite of the missed part. Let us see in the next Section the
experimental results.

4. Experimental Results

The first test was designed to show the discrimination
ability of the vectorial signature. To test the method we use
the shape images used for the MPEG-7 core experiment, de-
scribed in [2]. This database consist of 1400 isolated con-
tour shapes grouped in 70 different classes. We can see in
Table 1 the recognition results of different shape descrip-
tors over this shape database. Of course, pixel-based de-
scriptors perform better recognition results, but they are also
more time consuming and only work with pre-segmented
shapes. Studying the recognition results of our method, we
can appreciate that the vectorial signature can discriminate
well shapes between them and tolerate rotation and scale
changes, but do not support the symmetry transformations.

As we tested that the proposed signature is discrimina-
tive enough for symbol spotting purposes, for the next two
experiments real images are acquired with a low-resolution
VGA camera1 integrated on a cell-phone. The second ex-
periment is focused on a single sign appearing on different
environments. We built a groundtruth database with 122
images of the wheelchair symbol. We can see in Fig. 5 the
spotting results. The symbol is not well spotted in only 5
images of the whole database. In Fig. 5(a), 5(b) and 5(c)
we can see that the method is invariant to scale. In Fig. 5(d)
we can see that the method is tolerant to weak perspective.
Finally, note in Fig. 5(e) that some false positives appear,
as we can appreciate in the zoomed image, all the U let-
ters appearing in the image are confused with the polyline
representing the chair. However, the presence of these false
positives is expected since the shape of the letter and the
symbol are relatively similar.

Model

a) b)

c) d)

e)

Figure 5. Wheelchair Symbol Spotting in Dif-
ferent Environments.

Finally we tested the method on diverse symbol designs
to check the robustness of the method independently of the

1640 × 480 pixels



queried symbol. In Fig. 6 we can see that acceptable results
are achieved when testing the method with different traffic
signs.

Models

a) b)

c) d)

Figure 6. Other Examples of Symbol Spotting
in Cluttered Environments.

Studying these results we can conclude that the presence
of false positives varies depending on the complexity of the
queried shape (the more complex is the shape to find, the
less false positives appear) and the complexity of the envi-
ronment (the more cluttered is the environment, the more
false positives appear). These tests show the good location
and recognition performance of the method but also reveal
some drawbacks of the method. The proposed method is
not able to recognize symbols if the contour has been bro-
ken since the polylines are also broken and can not be com-
pared.

5. Conclusions

In this paper we have presented a method to detect the
zones of interest in real images where a given queried sym-
bol appear. We have modelled a vectorial signature in terms
of accumulated length and angle to guarantee invariance to
scale, and we have proposed a similarity measure using a
cross correlation to be invariant to rotation. Finally a voting
scheme has been used to cluster the zones of interest where
different parts of the queried symbol appear. The experi-
mental results show that this approach can detect graphical
symbols appearing in low-resolution real images.

The combination of a symbol spotting method, as the
presented one, with some well-known shape descriptor
yielding good recognition results, makes viable the devel-
oping of applications able to detect and recognize graphical
symbols in real environments. Driving assistance or blind
person aid systems are potential applications with needs
to recognize symbols in real images acquired with low-
resolution devices.
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