
A Region-Based Hashing Approach for Symbol
Spotting in Technical Documents

Marçal Rusiñol and Josep Lladós

Centre de Visió per Computador / Computer Science Department
Edifici O, Campus UAB 08193 Bellaterra (Cerdanyola), Barcelona, Spain

{marcal,josep}@cvc.uab.es,
http://www.cvc.uab.es

Abstract. In this paper a geometric hash function able to cluster sim-
ilar shapes and its use for symbol spotting in technical documents is
presented. A very compact representation of features describing each
primitive composing a symbol are used as key indexes of a hash table.
When querying a symbol in this indexing table a voting scheme is used
to validate the hypothesis of where this symbol is likely to be found. This
hashing technique aims to perform a fast spotting process to find candi-
date locations needing neither a previous segmentation step nor a priori
knowledge or learning step involving multiple instances of the object to
recognize.

1 Introduction

Architects and engineers use to store their designs in large databases of docu-
ments. They use to re-use data from previous designs for new projects. Graphical
documents such as architectural, electronic or mechanical drawings use to have
a big size with hundreds of graphical parts. In this framework, fast methods
for locating document zones where a given symbol appears are very useful for
browsing, navigation or even categorization purposes. Nowadays, the format of
these documents does not allow an intelligent way to browse them. The man-
ual inspection of technical documents becomes a tedious task, and when talking
about large collections, it becomes impossible to perform an exhaustive search.
In this paper we present a method to retrieve the locations of document images
in which a certain queried graphical symbol is likely to appear by a fast indexing
technique.

Although well-known shape description and recognition approaches perform
quite good recognition rates in difficult conditions as in presence of distortions,
occlusions and geometric transformations, they can not be applied to locate
graphical symbols in large collections of documents. Most of these techniques
are time consuming and only work for recognizing isolated shapes. The inter-
ested reader is referred to Zhang’s [11] review on shape description techniques.



2 Marçal Rusiñol and Josep Lladós

This is the reason why in the last years, Symbol Spotting has become an
emerging topic of interest among the Graphics Recognition community. It aims
to detect graphical symbols in large and complex document images by a fast
technique and needing neither a segmentation step nor a priori knowledge. Sym-
bol Spotting discriminates symbols by means of a very compact representation
of expressive features which are organized in a lookup table (usually a hash table
with its associated hash function) allowing graphic indexation of symbols appear-
ing in documents. Usually a validation of the hypothetic locations is performed
using a voting scheme as a post-processing step. Two different Symbol Spotting
approaches can be used depending on the chosen primitives. The methods work-
ing at pixel level, as for instance [6, 9, 12], and the ones focusing in geometric
primitives as segments, polylines, arcs, etc. as in [2, 5, 8]. Pixel-based methods
are usually more robust to noise, but they are more complex and need a multi-
level structure (as the dendrogram used in [12]) to segment and recognize at the
same time. On the other hand, more compact, fast and elementary descriptions
can be formulated when working with vectorial primitives even if they usually
lead to more false alarms and are more sensible to noise.

Given a feature vector x defining a shape in a N-dimensional space, a hash
function H(x) = y is a deterministic function projecting the feature vectors x
to an even distribution of one-dimensional key indexes y. They are useful for
finding an entry in a database by a key value. In our case, the index keys are
computed from the different closed regions composing a symbol which are the
primitives describing a given symbol. The ideal behavior of our hash function is
to provoke collisions (associate the same indexing key to different entry values)
for similar shaped primitives, and to associate different key indexes to different
shape inputs. The resulting hash table clusters similar shapes under a single key
index.

In the presented method, polygonally approximated regions composing a
symbol are used as primitives which describe it and a key index is associated to
each region. Geometric Hashing [3] is a well-known method to extract an index
of a given shape. However this technique only works well if the set of segments
of the model and the set of segments of the test shape have the same number of
segments. The actual raster-to-vector techniques are yet very sensitive to little
distortions and can result in a different number of segments for similar shapes,
as stated by Tombre et al. in [10]. Our presented method applies a hash function
to each region to extract an index identifying similar regions, being independent
of the number of segments forming the region since it copes with global shape
information.

The remainder of this paper is organized as follows: we introduce in the next
section how the graphical symbols are represented in a two-center bipolar coor-
dinate system. In section 3, the hash function and the whole indexing scheme is
presented. We provide the preliminar experimental results in section 4. A brief



A Region-Based Hashing Approach for Symbol Spotting 3

discussion on the presented approach is provided in section 5. Finally conclusions
and future work are presented in section 6.

2 Symbol Representation in a Two-Center Bipolar
Coordinate System

Graphical symbols found in technical documents are usually composed of a num-
ber of neighboring regions. Regions result from solid areas or closed contours in
line drawing images. We describe a symbol in terms of the structural combination
of regions, described by sequences of adjacent segments that approximate their
boundary. Let us further detail how the symbols are represented and encoded in
a two-center bipolar coordinate system which is an appropriate representation
for the computation of the presented indexing keys.

2.1 Primitive Extraction

A graphical symbol appearing in a technical document (such as a furniture sym-
bol in an architectural drawing) is decomposed and described in terms of its n
composing closed contours. The presence, in a given zone of the drawing of sev-
eral similar regions that the ones forming the queried symbol, turns this location
into a candidate for containing the queried symbol.

To represent symbols, a connected component analysis of the technical doc-
ument images is computed to first extract the closed regions. Their contours are
subsequently polygonally approximated to take the chains of adjacent segments
–polylines– as representing primitives. We illustrate in Figure 1 an overview of
all the representation process.

Although the presented method do not need the polylines to be closed, we find
that working with closed contours as primitives is much more stable to vector-
ization errors. We focus on an application dealing with architectural floor plans
which can be easily represented by regions. If the method has to be used with
another type of technical documents (for example electronic diagrams) which
contains symbols less represented by regions, another kind of primitives much
more representative should be considered.

2.2 Two-Center Bipolar Coordinates

A two-center bipolar coordinate system gives the distances (r1, r2) of a point
(x, y) to two reference centers. We choose the two reference centers among the
set of points of a given polyline p and we center them at (±a, 0). Afterwards,



4 Marçal Rusiñol and Josep Lladós

a) b)

c) d)

Fig. 1. Symbol representation steps. (a) Original symbol. (b) Connected components.
(c) Contour of each closed region. (d) Polygonally approximated regions with the num-
ber of segments composing the polylines.

each other point composing the polyline is represented in two-center bipolar co-
ordinates (r1, r2), defined in terms of Cartesian coordinates by

r1 =
√

(x + a)2 + y2

r2 =
√

(x− a)2 + y2
(1)

2.3 Cassinian Ovals

The Cassinian ovals were first studied by Giovanni D. Cassini as a model for
the orbit of the sun around the earth. We use the parameters of these curves as
features of the set of points forming the primitives. Let us detail how Cassinian
ovals are described.

In two-center bipolar coordinate system, each point (r1, r2) belongs to a
characteristic plane curve (known as Cassinian ovals [4]) described by all the
points such that the product of its distances from the two centers is a constant
b2 = r1r2. In Figure 2 we illustrate a series of Cassinian ovals with a = 1 and
with values of b ∈ [1.001, 2]. In our case, Cassinian ovals are the basis of the
hashing keys described in the next section.



A Region-Based Hashing Approach for Symbol Spotting 5

Fig. 2. A series of Cassinian ovals with a = 1 and for values of b ∈ [1.001, 2].

3 Hash Function and Indexing Symbols With a Hash
Table

In this section we describe how the hash function is formulated to be able to
describe shapes in terms of the Cassinian ovals parameters, and how these pa-
rameters are used as indexing keys. The whole indexation process is presented
afterwards. Let us begin with the primitive description.

3.1 Hash Function

Given a polyline p, it is encoded in terms of a tuple (a, b) defined as follows. Let
us first denote as ni a point over the polyline, ni ∈ p, and n′i ∈ p, as the furthest
point from ni in the direction of the line passing through the gravity center gc
of p. Let 2a be defined as the maximum distance among all the possible pairs
of points (ni, n

′
i). A transform matrix M is computed to rotate and scale the

whole polyline to transform the points ni to (−a, 0) and n′i to (a, 0). Then using
(±a, 0) points as centers, The value b is defined as the minimum constant to
build a Cassinian oval surrounding all the i points of p. An example is shown in
Figure 3. We illustrate in Figure 4 the possible surrounding ovals depending on
the reference centers.

The hash function H(p) = (a, b) projects p to a tuple by means of minimiz-
ing the value of b for the maximum value of a. The value a is normalized to the
total length of p then having a ∈ [0, 1] and b ∈ [0,

√
2]. Finally, applying the

equation 2 we discretize the values of a and b. Experimentally, we found that a
value m = 30 provokes collisions when computing keys of similar shapes while
minimizing the collisions of dissimilar shapes.



6 Marçal Rusiñol and Josep Lladós

Fig. 3. A polygonally approximated shape p with its gravity center gc. Given a point
ni ∈ p, n′i ∈ p is the furthest point from ni passing through gc. The value b determine
the smaller Cassinian oval surrounding the whole shape when ni and n′i are transformed
to (−a, 0) and (a, 0).

Fig. 4. A shape and the minimum surrounding Cassinian ovals depending on the ref-
erence centers. The gray surrounded shape is the one with minimum value b and max-
imum distance a.

x = round(x ∗m) (2)

The tuple (a, b) gives information about the ellipticity and circularity of the
set of points composing the analyzed region. As a is chosen as the maximum
value of a, it gives information of the major axis of the primitive p. If b is equal
to
√

2×a that means that the primitive is a circular shape, the more b decreases
for the same a values, the more the primitive shape would be elongated. The
use of these parameters is an attempt to combine the information bringed by a
very simple well-known global shape descriptors: eccentricity and non-circularity.

3.2 Indexation Process

In an off-line step, the locations of the gravity centers of all the polygonally ap-
proximated regions p appearing in the documents of the collection are stored in



A Region-Based Hashing Approach for Symbol Spotting 7

a hash table in their corresponding entry with index H(p) = (a, b). Then, when
we query a symbol formed by a set of polylines S = {p1, ..., pn}, the querying
process only needs to compute the entries of the hash table to activate, apply-
ing the hash function H(px) to all the regions px ∈ S. Ideally, in a given table
entry i with indexing key (ai, bi) we will find all and only the similar primitive
regions. A query symbol formed by several primitives will activate as many ta-
ble entries as dissimilar regions primitives compose it. All the locations pointed
by the activated table entries are likely to contain a similar primitive than one
of the query, the locations accumulating a high number of these primitives are
then hypothetic locations to contain the whole symbol. To deal with a database
containing several documents, the locations are expressed with three dimensions
including the identification number of the document where the gravity center
appears.

Following the idea of the Generalized Hough Transform [1], a voting process
is performed to reinforce the locations where diverse regions appear. At each
zone in which we find a given indexed primitive, a vote is casted. As the symbols
are formed by several primitives, high voting values in a given zone of the tech-
nical document points out the presence of several regions composing the query,
thus a high probability to find the queried symbol in this zone. The accumula-
tion of queried primitives in a given zone always forms clusters of votes while
the indexed primitives belonging to other symbols will just scatter votes without
any coherence in the whole space loosing significance.

4 Experimental Results

We have tested our method using a large real architectural floor plan in PDF
format. The document image is 7150 × 6290 b/w pixels. After the connected
component analysis and the polygonal approximation using Rosin and West’s
method [7], the vectorial DXF file is composed of more than 3000 polylines repre-
senting regions. In this floor plan several furniture symbols appear, an instance
of each symbol (arising from a different floor plan, but designed by the same
architect so the symbol design is the same) has been taken as the model symbol
to perform the queries. The whole vectorial file has been labeled to be used as
ground truth. Although the results are preliminar, they are encouraging. We
can appreciate in Figure 5 the result of spotting the toilet sink and the bidet
symbols. Several false positive regions are also spotted since they are very simple
circular or squared regions, similar to some of the details of the query symbols.

In Table 1 the numeric details concerning the performance of the proposed
spotting method are reported. As we can appreciate, the more complex is the
symbol, the more false alarms appear. This result is due to the fact that more
entries in the hash table are concerned and consequently, more collisions are
considered to form part of the queried symbol. In addition, the more complex is



8 Marçal Rusiñol and Josep Lladós

a)

b)

c)

Fig. 5. Symbol spotting. (a) Models, a toilet sink and a bidet. (b) Original vectorial
image. (c) Results of the spotting process. Regions labeled as bidet are drawn in red
and regions labeled as toilet sink are drawn in green. Notice that most of false alarms
are circular or squared simple regions.



A Region-Based Hashing Approach for Symbol Spotting 9

the symbol to search, the more computationally expensive is the method.

Table 1. Number of regions and segments composing each model. Number of regions
not belonging to the queried symbol labeled as positives. computation time (in seconds).

Bath Bidet Toilet Kitchen sink Toilet sink Table

Num. of regions 7 8 6 10 12 26

Num. of segments 101 110 112 144 157 351

Num. of false alarms 27 59 40 82 93 589

Time 0.288 0.267 0.347 0.344 0.568 1.331

5 Conclusions, Discussion and Future Work

The presented method aims to index large documents contained in large databases
by the graphical symbols appearing in it by means of a hash table. When index-
ing shapes by a hash table, neither a segmentation of the shapes is needed nor
previous knowledge is required. Learning processes are not needed, in the sense
that there is no stage needing several instances of the object to locate to learn
its characteristics.

When using hash functions, obviously, if similar shapes have to fit the same
table entry, we will have some collisions with shapes which are not similar but
are projected to the same tuple. As we can appreciate in the results, these col-
lision make that spotting approaches based on hash functions, usually result in
a set of false alarms which are not a really significant problem since elevated
recognition rates are not needed in these kind of applications.

Symbol Recognition techniques are a quite mature research topic in the
Graphics Recognition field. The results of symbol recognition methods are usu-
ally close to the 100% recognition rate. In addition of the symbol descriptor,
which usually is a long feature vector, symbol recognition methods combine
these descriptors with learning and classification algorithms to cluster these de-
scriptor feature vectors in symbol classes easy to classify.

These approaches involve having an a-priori knowledge about the symbols to
recognize since they need enough examples to learn the descriptors distribution.
In addition, usually they are formulated only to recognize isolated symbols. In
most of applications it is obvious that this is a correct approach, for instance,
an OCR system has to recognize a finite set of shapes which can be “easily”
segmented and which can have a lot of variability inside a given class. To reach
acceptable results a learning step is necessary. However, if we think in an index-
ing framework able to spot symbols appearing in a large collection of documents



10 Marçal Rusiñol and Josep Lladós

and usually queried by example, we can see that the problem is not the same.
Symbol Spotting techniques do not require a-priori knowledge nor learning step.
As they have to lead with un-segmented data, they have to tackle with “recog-
nition” and “segmentation” at the same time.

This paper is focused on the use of a very simple primitive description hashed
to build an indexing table. The results show that when designing a spotting
framework there is no need to use complex shape descriptors, a feature vector
formed by few digits (we use only two integers to describe a given primitive), a
hash function to cluster the primitives, and an adequate voting scheme is enough
to locate the regions of interest of a document where a given symbol is likely to
be found.

It is obvious that the use of more complex feature vectors can lead to less
false alarms and better identification of correct symbols since they are usually
more representative and have more discriminant power. But the use of more
and more long feature vectors, also makes harder the definition of a proper hash
function able to cluster similar shapes in the same table entries. We strongly
believe that symbol spotting algorithms do not need complex shape descriptors
but can perform quite well using simple features combined with an appropriate
hash function and a posterior voting scheme.

This paper has presented a work in process, and some improvements are
planned. Let us enumerate and briefly explain the most important research di-
rections.

First, the performance of some other simple primitive description techniques
have to be tested. In this paper we shown that indexing symbols does not need
for complex or big feature vectors, but with only a couple of numbers promising
results can be reached. Well-known shape descriptors as Hu’s geometric moment
invariants, Zernike moments, generic fourier descriptors, etc. could be used as
well to generate simple key indexes to hash symbols.

Secondly, at this moment, the voting process to validate the hypothetic re-
gions of interest, just accumulates votes in the locations where there is presence
of the queried regions. At this moment we do not look if the structural organi-
zation of these primitives is consistent with the queried symbol. It is common to
have some parts of technical drawings formed by a repetition of a simple region
forming a given pattern, as for instance dashed lines are usually used to represent
walls in floor plans. These cases are critical since if the queried symbol contains
a single instance of these primitives, the zones formed by the repetition of the
primitive will accumulate more votes than the zones containing the symbol itself.
A voting scheme looking at the structural organization of indexed primitives is
planned.



A Region-Based Hashing Approach for Symbol Spotting 11

Finally, a performance evaluation framework for symbol spotting techniques
has to be developed. Metrics to evaluate the performance of the recognition on
the one hand and the localization on the other, are not easy to define. Many
different cases has to be taken into account: false alarms, over and under seg-
mentation of the regions of interest, missing symbols, etc.

Acknowledgments

This work has been partially supported by the Spanish projects TIN2006-15694-
C02-02 and CONSOLIDER-INGENIO 2010 (CSD2007-00018).

References

1. Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pat-
tern Recognition 13(2), 111–122 (1981)

2. Dosch, P., Lladós, J.: Vectorial Signatures for Symbol Discrimination. In: Lladós, J.,
Kwon, Y.B. (eds.) Graphics Recognition: Recent Advances and Perspectives. LNCS,
vol. 3088, pp. 154–165. Springer, Heidelberg (2004)

3. Lamdan, Y., Wolfson, H.J.: Geometric Hashing: A General and Efficient Model-
Based Recognition Scheme. In: 2nd International Conference on Computer Vision,
pp. 238–249. (1988)

4. Lockwood, E.H.: A Book of Curves. Cambridge University Press, (1967)
5. Locteau, H., Adam, S., Trupin, E., Labiche, J., Héroux, P.: Symbol Spotting Using

Full Visibility Graph Representation. In: 7th International Workshop on Graphics
Recognition, pp. 49–50. (2007)

6. Müller, S., Rigoll, G.: Searching an Engineering Drawing Database for User-Specified
Shapes. In: 5h International Conference on Document Analysis and Recognition, pp.
697–700. (1999)

7. Rosin, P.L., West, G.A.: Segmentation of Edges into Lines and Arcs. Image and
Vision Computing 7(2), 109–114 (1989)

8. Rusiñol, M., Lladós, J.: Symbol Spotting in Technical Drawings Using Vectorial
Signatures. In: Wenyin, L., Lladós, J. (eds.) Graphics Recognition: Ten Years Review
and Future Perspectives. LNCS, vol. 3926, pp. 35–46, Springer, Heidelberg (2006)

9. Tabbone, S., Wendling, L., Zuwala, D.: A Hybrid Approach to Detect Graphical
Symbols in Documents. In: Marinai, S., Dengel, A. (eds.) DAS VI. LNCS, vol. 3163,
pp. 342–353, Springer, Heidelberg (2004)

10. Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S.: Stable and Robust
Vectorization: How to Make the Right Choices. In: Chhabra, A.K., Dori, D. (eds.)
Graphics Recognition, Recent Advances. LNCS, vol. 1941, pp. 3–18, Springer, Hei-
delberg (2000)

11. Zhang, D., Lu, G.: Review of Shape Representation and Description Techniques.
Pattern recognition 37(1), 1–19 (2004)

12. Zuwala, D., Tabbone, S.: A Method for Symbol Spotting in Graphical Documents.
In: Bunke, H., Spitz, A.L. (eds.) DAS VII. LNCS, vol. 3872, pp. 518–528, Springer,
Heidelberg (2006)


