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Abstract. In this paper we present a method to determine which sym-
bols are probable to be found in technical drawings using vectorial signa-
tures. These signatures are formulated in terms of geometric and struc-
tural constraints between segments, as parallelisms, straight angles, etc.
After representing vectorized line drawings with attributed graphs, our
approach works with a multi-scale representation of these graphs, re-
trieving the features that are expressive enough to create the signature.
Since the proposed method integrates a distortion model, it can be used
either with scanned and then vectorized drawings or with hand-drawn
sketches.

1 Introduction

Symbol recognition is one of the major research activities in the field of Graphics
Recognition. It has a number of applications to the analysis of technical draw-
ings and maps at large. Examples are the interpretation of scanned drawings
for validation or retroconversion, or the iconic indexing in a document image
database. In the problem of retrieving images from a database by their content,
applications use to formulate queries in terms of textual information as latitude
coordinates, street names, etc. or graphical information as the situation of inter-
esting elements as roads, rivers, airports, etc. as explained in [1]. On the other
hand, iconic indexing allows to retrieve images from a large database by query-
ing single elements of the drawing. Usually, architects or engineers have a great
amount of technical drawings and they re-use data from previous projects for
their new designs. Nowadays locating these elements requires visual examination
of each document and it is a tedious task. Iconic indexing is suitable to provide
solutions to this kind of problems. Often it is more natural and effective, instead
of making a textual query to use a sketching interface where the symbol to spot
is not stored in a database but drawn in an on-line process by the user.

In this paper we present a method to discriminate symbols in technical draw-
ings for an indexing purpose. Effective symbol recognition methods exist in the
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literature [2]. Structural, usually graph matching, statistical or hybrid methods
may be found. However, most of the approaches require a segmentation of the
symbol to achieve a classification with a high performance. When dealing with
large documents, a paradox appears: to segment for recognizing or to recognize
for segmenting. Graph matching or other recognition schemes are too much com-
plex to tackle with segmentation and recognition simultaneously. So, a method
to determine which symbols are likely to be found in the drawing is suitable
as a pre-processing step to recognition techniques. A compact representation of
features —signature— can provide the accuracy and the speed desirable in such
cases. A comprehensive review on description techniques for shape representa-
tion can be found in [3].

There are two different signature paradigms for symbol description depend-
ing on whether it is represented, with pixel based features or with a vectorial
representation. Some techniques like those described in [4] use bitmap images to
find a signature, named force signature, based on angular information to describe
each symbol. The method can handle degradation of the objects to recognize,
because force signatures are robust to noise. Also, the method can discriminate
very similar objects, but user interaction is needed to correct object segmenta-
tion. In [5] constraints as length-ratios or angles between two pixels in reference
to a third pixel are accumulated in a histogram used as a symbol descriptor.
This method gives high performance under diverse drawbacks as degradation,
rotation, scaling. However it also needs a pre-segmentation of the symbols and
its complexity is very high (O(n3)) because every triplet of pixels is considered.
Since technical drawings are highly structured and composed by simple geomet-
ric sub-shapes, it seems more suitable to work with a vectorial representation
rather than with pixel based images. In [6] the raster images are approximated
by polygons to obtain boundary segments and to extract constraints from this
representation as distance, angle, directions, etc. among segments. An indexing
scheme is built and the method gives good results locating and recognizing the
objects. However, the method can not handle images with noisy edge data. In
[7], the image is completely vectorized and the segments are combined to form a
set of tokens, as chains of adjacent lines, or even textual features. The frequency
of an indexing feature and the document frequency of the indexing features are
taken into account to extract the similarity between a document and the query.
We have based our work on the method proposed by Dosch and Lladós [8], where
the vectorial signatures are built from the occurrences of constraints between seg-
ments, as parallelisms, straight angles, overlap-ratios, etc. But, these signatures
are calculated only for small rectangular parts of the image. This fixed bucket
partition provokes a lack of flexibility, there is no invariance to scale. It can also
cause some problems if the symbol to discriminate is not completely inside of
one of these windows.

Our work is targeted to vectorized drawings obtained either from scanned
printed pages or from hand-drawn sketches. The operation of feature extraction
when we are working with a vectorial representation can provide more speed
than when we face up to a pixel based approach. The drawback of vectorial data
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is that a distorted input or even a different set of vectorization parameters may
result in a sensitive variation in the obtained segments. Because of that, the
spotting technique must be error tolerant and invariant to rotation, scale and
translation. These constraints, which are a problem in bitmap images, are easily
solved in vectorial representation if the features taken into account are extracted
using comparisons between different segments (ratios or angles).

The features are organized in a signature and then matched against a data-
base of signature models in order to index the different regions of interest of the
drawing, as explained in [9]. This kind of indexing-based approaches, together
with vectorial signatures, do not look for an exact match with the model symbols
but to determine which symbols are probable to be found in these regions by a
fast technique. Afterwards, the recognition step can be focused in each region
and the well-known recognition techniques can take advantage of the extracted
knowledge of the spotting process.

Vectorial signatures are suitable for this kind of problem since the drawings
are formed by structured sub-shapes, so, the extracted constraints are focused
in geometric-invariant relationships between segments, as parallelisms, straight-
angles, segment junctions, length-ratios, distance-ratios, etc. The determination
of the spatial relationship between a pair of segments is explained in [10]. These
simple constraints can be observed and organized in a hierarchical way in order
to represent some expressive structural relations between different segments.
This means that it is more representative to find a square than two parallelisms
and four straight angles. Our method tries to find these sub-shapes to create the
vectorial signature.

The remainder of this paper is organized as follows. Section 2 describes how
the vectorial signatures are built and learned. In section 3, we present the con-
struction of the regions of interest which allows to apply the signatures in real
drawings. In Section 4, the experimental results are explained and finally, the
conclusions are discussed in section 5.

2 Building the Vectorial Signatures

Given a line drawing image, it is first vectorized and represented with an at-
tributed graph. Graph nodes represent segments and graph edges represent struc-
tural relationships among segments. Formally, a graph G is defined as follows:

Definition 1. A graph is denoted as G = (V, E) where V is the set of nodes
representing the segments and E is the set of edges representing the relationship
between them. A subgraph of G containing the nodes si, ..., sj will be denoted as
G{si,...,sj}. G is a complete graph.

Definition 2. An attributed graph is denoted as G = (V,E, µ, ν) where ΣV

and ΣE are a set of symbolic labels, and the functions µ : V → ΣV and ν :
E → ΣE assign a label to each node and each edge. ΣV = [θsi , ρsi ] will contain
the information of each segment si according to a polar representation. ΣE =
{L, T, P, 1, 0} will represent the different kind of relationship between each pair
of segments. The possible relationships between segments are:
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1. L represents a straight angle between a pair of adjacent segments.
2. T represents a straight angle between a pair of non-adjacent segments.
3. P represents two parallel segments.
4. 1 represents two adjacent segments.
5. 0 represents a non expressive relation between two segments.

Definition 3. MG is the adjacency matrix of a graph G and MG{si,...,sj} the
adjacency matrix of the subgraph G{si,....,sj}.

We define a signature in terms of a hierarchical decomposition of symbols.
Thus, it counts the occurrences of primitive shapes that are expressive enough in
line drawings as squares, triangles, parallelisms, etc. Since the number of vectors
of these shapes are not the same for all of them, we work with a combinatorial
approach on the number of graph nodes. In Fig. 1, we have got a graph1 of a
simple symbol, we can see the symbol could be decomposed in a square and
in a triangle, the subgraph G{s2,s3,s4} represents the triangle and the subgraph
G{s1,s4,s5,s6} the square.

a) b)

Fig. 1. (a) A simple symbol. (b) Its attributed graph

For all the segments, all the subgraphs formed by at least two nodes, and a
maximum of four nodes are analyzed to search some representative shapes. The
equation 1, being n the number of segments, gives the number of subgraphs to
analyze.

#G{...} =
4∑

k=2

Ck
n =

4∑

k=2

n!
(n− k)!× k!

(1)

For each subgraph, we work with its adjacency matrix. The matrix MG is in fact
only computed once for all the segments, and then, when we want to focus to
a subgraph, a group of rows and columns of this matrix will be selected. Notice
that in most cases the relations between segments could be extracted in the
1 The edges labelled with a 0 are not shown.



Symbol Spotting in Technical Drawings Using Vectorial Signatures 5

vectorization process. In the extraction of these constraints, each comparison
has associated a threshold value in order to be more tolerant. For the simple
shape of Fig. 1, we can see below (2) its corresponding adjacency matrix MG.

MG =




s1 1 0 L P L
1 s2 L 1 0 0
0 L s3 1 1 0
L 1 1 s4 L P
P 0 1 L s5 L
L 0 0 P L s6




(2)

From this matrix, we examine all the possible combinations of matrices taking
four, three and two of the six possible nodes. Hence three different levels are
considered. Below, in (3) we can see the resulting sub-matrices considering only
the triangle and the square of the shape of Fig. 1.

MG{s2,s3,s4}
=




s2 L 1
L s3 1
1 1 s4


 andMG{s1,s4,s5,s6}

=




s1 L P L
L s4 L P
P L s5 L
L P L s6


 (3)

For all the sub-matrices representing the subgraphs, normally the analysis of
one single row can determine the shape that it encodes.

Definition 4. Let us denote d(MG{si,...,sj}
) a single row of an adjacency matrix.

It will be used as a descriptor of the expressive sub-shapes. Every descriptor d
has associated an equivalence class L : {d1, ..., dn} of its synonyms.

Definition 5. Let S be a vector where in each position we have the number
of occurrences of each descriptor d(MG{si,...,sj}

) representing an expressive sub-
shape. S is defined as the vectorial signature of the analyzed shape.

A descriptor of a reference segment having two straight angles and a parallelism
represent a square d = [siLLP ]. As the information inside the matrix depends
on the order of definition of the segments when the vectorization step is done,
we must have a dictionary of its synonyms L : {d1, ..., dn}. For instance, a seg-
ment having a descriptor d = [siLLL] is the same that another segment having
a descriptor d = [siPLP ] because if a segment is perpendicular to three other
segments, one of them is parallel to two of them and perpendicular to the last
one. We can see some example of synonyms list and some of the expressive
shapes taken into account to perform the voting scheme to build the signature
in Table 1. It seems redundant to store the information for multiple levels of
the subgraph, if in the level of four nodes we find a square, it is obvious we will
find two parallelisms and four straight angles in the level of two nodes. But this
redundancy helps to detach completely all the multiple shapes in the drawing.
For instance, a square with a cross inside can be seen as a square and a straight
angle, or it can be seen as a set of triangles (see example in Fig. 2). This redun-
dancy helps to be more error tolerant and to store all the structural information
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Table 1. Some possible rows of the sub-matrix, with its synonyms and its representa-
tions

Level Synonyms list Image representation of the sub-shapes

4 nodes [[siPPP ]]

4 nodes [[siPPL], [siPLP ], [siLPP ], [siLLL]]

4 nodes [[siPLL], [siLPL], [siLLP ]]

3 nodes [[siPP ]]

3 nodes [[siPL], [siLP ], [siLL]]

3 nodes [[si11]]

2 nodes [[siP ]]

2 nodes [[siL]]

2 nodes [[si1]]

of all the multiples sub-shapes of the drawing. The occurrences of each sub-shape
will vote to build the vectorial signature. To have more information, we can add
some additional information as the length-ratio and the distance-ratio at the
end of the signature. These measure features can take values from 0 to 1; this
space is the split into five bins where the votes are accumulated. We can see an
example of a signature of a symbol in Fig. 3.

a) b) c)

Fig. 2. (a) Original symbol. (b) Symbol detached at level four and at level two. (c)
Symbol detached at level three

The learning process of the signatures has been made using a selection of
the symbol database used in the GREC 2003 symbol recognition contest [11],
containing symbols of both architectural and electronic fields. The symbols with
arcs are not taken into account, except the doors which are approximated by a
polyline. The signature of the twenty-seven symbols has been calculated, and a
mean of signatures has been made with a set of at least ten distorted representa-
tions of each symbol. With this symbol database, there is no need to use higher
order relationships to discriminate the symbols between them.

Once the database of signatures is constructed, we can compare the obtained
signature with this database and associate a probability to each correspondence
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a) b)

Fig. 3. (a) A symbol of a bed. (b) A graphical representation of its signature divided
in the sub-shapes features and the measure features

between the original symbol and all the symbols of the database following a
distance function. This comparison process could be done in a hierarchical way,
in order to discard some non possible solutions, or simply associating weights
to each feature of the signature to classify the most relevant features. The used
distance function is a simple Euclidean distance which gives acceptable results.

3 Regions of Interest

When we work with complete drawings we need to divide the drawing into
separate windows framing every symbol. In each zone of interest a voting scheme
of structural relations is used. The idea is that every structural relation found in
this zone will contribute to form the signature to be compared with the models.
Every framing window has its own voting scheme and the regions where the
votes reach their maximum will be selected as candidates to contain the queried
symbol using a voting approach inspired by the idea of the GHT [12]. These
regions are dynamic since they are built depending on the original line drawing,
this approach works much better than other segmentation techniques used in
technical drawings which only divide the drawing in a fixed bucket partition
which loses flexibility.

These regions of interest are computed from the maximum and minimum
coordinates of several adjacent segments. So, the size of the regions of interest
is variable. Also, a first filter of area and aspect-ratio can be easily implemented
in order to delete some non relevant symbols as for example the walls in the
architectural field or the wiring connections in electronic diagrams.

For each node nsi of G (segment in the drawing) we build a list of all the
nodes connected to nsi by an edge. We have a list of all the endpoints of the
adjacent segments to reference segment. In this list, we get the maximum and
minimum coordinates of the endpoints that will construct a framing window of
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these segments. As in most cases of technical drawings the symbols have a low
eccentricity, its bounding-box are square-shaped and this kind of windows frame
them. But, as the windows are based on the connection of the segments, the
efficiency decrease if the symbols are disconnected or overlapped.

But, in the vectorization step, more problems may happen: small vectors can
appear due to noise, straight lines can be split into several collinear vectors, the
arcs are approximated by polylines, some neighboring lines in the drawings are
not adjacent in the vectorial representation because of gaps, dashed lines appear
as a set of small segments instead of one unique instance, etc. To solve this kind
of problems, the best results are reached when we work with a lower resolu-
tion of the drawing to calculate the windows. This sub-sampling step reduces
local distortions in the vectorial representation but preserving the most salient
geometrical properties.

a) b) c)

Fig. 4. (a) Original drawing. (b) Graph contraction by distance. (c) Low resolution
representation

First, a contraction of the normalized graph is done, merging the adjacent
nodes having a lower distance than a threshold thr. Then, applying the equation
4 to each node coordinate we get a lower resolution graph. With this represen-
tation with decreased resolution, the problems of the gaps, or the split segments
are solved. Every endpoint is sampled for each step of m, so the minor errors
are corrected.

x = m× round(x/m)
y = m× round(y/m) (4)

Experimentally, in Fig. 4(a) the graph has 154 nodes because an horizontal
line has been split in the vectorization process. When the graph contraction by
distance is done (with a threshold value thr = 0.06) Fig. 4(b), we get a graph
with 52 nodes which lines are crooked due to the node contraction, and with the
decreased resolution graph (with m = 35) Fig. 4(c) we have to face up to only
33 nodes.

This change of resolution can cause some other errors, for example some lines
which are almost horizontal or vertical can be represented with a very different
slope. But these errors do not interfere with the obtained windows, since they
continue to frame the symbols. Notice that these lowest resolution images will
only be used to calculate the regions of interest, not for the spotting process.
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Since each segment proposes a region of interest, there is no problem if one of
the segments of a symbol gives a mistaken window.

4 Experimental Results

Our experimental framework consisted of two scenarios. First we have tested
the performance of our approach to classify isolated symbols. Secondly, we have
used the method for symbol spotting in real architectural drawings.

Table 2. Results of the recognition

Symbol Recognition rate Symbol Recognition rate

−→ 36/38 −→ 19/19

−→ 39/39 −→ 19/20

−→ 15/15 −→ 15/15

−→ 27/27 −→ 16/16

−→ 15/15 −→ 20/20

−→ 7/8 −→ 20/20

−→ 36/38 −→ 14/14

−→ 11/11 Total 309/315

The first tests were done using the GREC 2003 database. This database
contains, in addition of the models, some synthetical distorted symbols, rotated
symbols and symbols at different scales. Working with fifteen different classes of
symbols, a set with 315 examples of different levels of distortion has been tested
and we achieved a 98% of recognition. We can see the detailed results in Table
2. With 230 examples of rotated and scaled symbols we achieved the 100% of
recognition.

In the second test, we tried out the vectorial signatures with real architectural
drawings. Allowing a higher error than when we are working with the database,
the symbols can be spotted, and they are usually well discriminated. As we can
see in Fig. 5, some false positives appear (dashed zones) and one sofa is not
spotted (grey zone). False positives appear when a window does not correctly
frame a symbol, or when a symbol (like the shower) is not in our signature
database. The stairs which consist of a lot of segments give a lot of regions of
interest where false positives appear, and the wrong segmentation of the tables
makes that the part where the chairs are drawn a sofa is spotted, because their
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a)

b) c)

Fig. 5. (a) Original image. (b) Locations with high probability to find a sofa. (c)
Locations with high probability to find a single door

representation is very close. When we use vectorial signatures in real drawings
there are two factors that cause the spotting results not to be so good. First of all,
the symbols can be adjacent between them or to a wall, or the region of interest
could not frame perfectly the symbol, in this case we face up to occlusions and
additions of segments. On the other hand, in real drawings, the symbol design
may be different of the learned model, so the learned features of a symbol could
not appear in real drawings, in this case it is obvious the symbol can not be
spotted, a semantic organization of different design instances for any symbol is
necessary.

Finally we tried the method with an application of image database retrieval
by sketches. A sketch of a symbol is drawn and then vectorized. Its signature is
computed and the locations of a drawing with high probability to contain the
queried symbol are spotted. We can see the results in Fig. 6. With this kind
of applications we have to face up to two important drawbacks, first of all, the
signature of the sketch is not the same of the models, because in the vectorization
process a lot of small single segments appear. Secondly, as we said before, the
symbol design may change from a drawing to another. That is why in this test we
must allow a higher error in the spotting process and the constraints to obtain
the regions of interest must be much more restrictive, otherwise a lot of false
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a) b)

c)

d)

Fig. 6. (a) Sketch of a sofa. (b) Sketch of a bed. (c) Original drawing. (d) Locations
with high probability to find a sofa (grey zones) and a bed (dashed zones)

positives appear. This kind of applications, give much better results when they
are used in an on-line process in order to have the users feedback when the sketch
is drawn to correct the representation errors.

5 Conclusions and Discussion

In this paper we have presented a method to detect the regions of a technical
drawing where a symbol is probable to be found. This method is suitable for ap-
plications of iconic indexing and retrieval. Our method, starting from a vectorial
representation of the line drawing, builds a vectorial signature in each region
of interest using a voting scheme. These signatures are formed by the occur-
rences of some sub-shapes which can appear in line drawings that are expressive
enough, and by some additional information as length-ratios, distance-ratios,
etc. These signatures are then matched with the database of learned signatures
of the models to determine which symbol is probable to be present.
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We can see that the symbol discrimination using vectorial signatures gives
good results when we are working with the database and with symbols with syn-
thetical distortion, which is a controlled framework. In real scanned architectural
drawings, the segmentation and discrimination of symbols are done simultane-
ously, even if the symbols are usually well spotted, a lot of false positives appear.
In the image database retrieval by sketches test we get acceptable results. As
the objective of this technique is not to give a recognition of the symbol but in
some way to index the drawing, the false positives problem is not so significant.

When working with vectorial data, one of the main drawbacks is the arc
representation. In this paper we have approximated arcs with polylines, but it is
necessary to add an arc segmentation algorithm in the vectorization process to
consider the arcs and circles as expressive sub-shapes. Moreover the hierarchical
organization of the signatures is essential to achieve a fast and accurate index-
ation of line drawings. Some features are more discriminative than others, and
the presence or absence of a feature can cluster the candidate symbols database.
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