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Abstract—Word-spotting methods based on the Bag-of-
Visual-Words framework have demonstrated a good retrieval
performance even when used in a completely unsupervised
manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring
labeled data, these methods also present some drawbacks.
For instance, having to train a suitable “codebook” for a
certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which
is trained from synthetic data. The aim of the proposed ap-
proach is to generate a codebook where the only information
required is the type of script used in the document. The use
of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed
method is able to determine which set of codewords have
a semantic representation of the descriptor feature space.
Experimental results show that the resulting codebook attains
a state-of-the-art performance while having a more compact
representation.

Keywords-Word Spotting; Bag of Visual Words; Synthetic
Codebook; Semantic Information;

I. INTRODUCTION

Handwritten keyword spotting is the document image

retrieval task devoted to obtain a ranked list of words

that are relevant to a user’s cast query. In its most simple

formulation, document images are already pre-processed

and segmented into individual words. The user casts a

query in form of an example of the keyword he wants to

retrieve, to then obtain a ranked list in which desirably

the words having the same transcription are ranked better

than the rest of the words. This paradigm is known as

segmentation-based query-by-example keyword spotting,

which is the scenario in which we are centered in this

paper.

Since the seminal papers of Manmatha et al. [1], [2]

that introduced the problematic of handwritten keyword

spotting more than twenty years ago, many advances have

been proposed. Performances reached on public datasets

have been steadily increasing with the proposal of better

feature representations and retrieval strategies. In addition

to the overall retrieval accuracy, many other advances have

been made as well. Segmentation-free methods have been

proposed [3], [4], [5], [6], [7], query-by-string techniques

have emerged [8], [9], [10], [11], [12], and different

methods have incorporated techniques from the informa-

tion retrieval field such as relevance feedback [13], re-

ranking [4] or query expansion [4].

Although systems which incorporate a learning step to

improve the retrieval accuracy obtain a better performance

than systems purely based on visual information [5], [10],

[14], [9], unsupervised methods are more desirable in cer-

tain scenarios. For example, in large document collection

with hundreds of pages and without any annotation, an un-

supervised method can be used directly without manually

annotate a subset of pages. Also, an unsupervised method

can be used for instance to group similar looking word

snippets into clusters [15]. This word clusters then can be

used to simply accelerate the retrieval system but also to

propagate the annotations provided by the user or to search

consensus to the annotations given by a text recognition

system.

Unsupervised word spotting methods based on the

Bag-of-Visual-Words paradigm can attain a high retrieval

performance when the methods used at each step are

selected carefully [16]. Besides its retrieval accuracy these

methods have the advantage that words are represented by

a fixed-length vector, so standard dimensionality reduction

techniques have been used to efficiently store and index

large collections of documents [3], [17]. However, these

methods require the use of a codebook to encode locally

extracted descriptors into codewords. The performance of

the system is dependent on the quality of the codebook

and the number of codewords which yields a better

trade-off between dimensionality (i.e. memory usage) and

performance has to be found. On small datasets, creating

a codebook does not have a high cost, but, in large

collections, with hundreds of thousands of words written

by multiple writers the computational cost of generating

the codebook might be prohibitive. A straightforward

solution is to randomly sample a subset of word snippets

to generate the codebook. However, this approach has the

drawback that certain characters and writing styles may be

underrepresented by the codebook. Therefore, we propose

a codebook trained from synthetic data which incorporates

semantic information in the generation process to deter-

mine the optimal size and cardinality of the codewords.

The use of synthetic data has several advantages (c.f. [18],

[14], [19]): it ensures that all characters are properly

represented and it allows to simulate the script variability

present in documents written by multiple writers. Since

there are many true-type fonts which replicate the human

handwritten style it is easy to incorporate many different

versions of the same character. Additionally, it also allows
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CLUSTER 09: DESCRIPTORS

CLUSTER 09: CENTROID

CLUSTER 10: DESCRIPTORS

CLUSTER 10: CENTROIDS

Figure 1: Two examples of the clusters generated by the codebook. CLUSTER 09 contains descriptors from symbols [0,

8, c, g, b, j, h, p, f, x, u], while CLUSTER 10 is formed by descriptors from [h, b, 4, 6, t, k, u, o, f, d, j, l, p, y, w, a,

q, i, n]. CLUSTER 10 is represented by 5 centroids because it has at least a nested cluster.

to incorporate semantic labels to the information used to

create the codebook. This extra information is used to

obtain an actual measure of the clustering accuracy of the

codebook. Thus, the codebook is able to automatically

determine the amount of codewords needed to properly

represent the feature space. The main contributions of the

paper are threefold. We present a method to generate a

codebook from synthetic data. A new procedure used to

encode descriptors into visual words is proposed. Finally,

we provide the basis of a method to encode descriptors

efficiently.

The rest of the paper is structured as follows: in Section

II we present the method used to to create the codebook

from synthetic data. Then, in Section III, we show how

descriptors are encoded into visual words. Finally, in

Section IV, we present the spotting performance attained

by the proposed codebook and, in Section V, we discuss

the main contributions of the paper.

II. SYNTHETIC CODEBOOK GENERATION

The codebook is trained with HOG descriptors [20]

extracted from characters generated by true-type fonts that

replicate the human handwriting style. Training samples

are then pairs x = (d, c), where d is the HOG descriptor
and c ∈ C is the semantic label of the character. Therefore,

the training set is formed by the training samples extracted

from all the considered characters. Additionally, we also

incorporate training samples that cover multiple characters

(i.e. bigrams). We use the statistical data reported by

Jones and Mewhort to select the bigrams most common

in the English language [21]. Therefore, the training set is

generated from 62 different characters and 1874 character

bigrams, and has 36 different semantic labels as we do not

differentiate between upper and lower case characters.

We generate the codebook by fist grouping the training

samples using agglomerative clustering and then using

the Shannon entropy to partition these tree into multiple

clusters.

A. Agglomerative Clustering

Agglomerative clustering is a bottom-up hierarchical

clustering algorithm that recursively groups the two clos-

est clusters until all samples are grouped together. This

procedure generates a binary tree that later has to be

partitioned into clusters by using some criteria (e.g. fixed

number of clusters, cluster compactness [22], a contrario
approach [23]). The distance between clusters can be

computed in many ways but the most common are the

distance between the closest two elements (i.e. single-

linkage), the distance between the two further away el-

224224



ements (i.e. complete linkage) and the average distance

between all elements of the cluster. The estimation of

these distances though limit the practical usage of the

method as the complexity of the standard algorithms

have a O(N2) complexity both in terms of memory and
runtime. For average distances, Leibe et al. proposed the

average-link clustering with nearest neighbor chains [22]

which reduces the memory complexity to O(N). However,
their algorithm can only be used when the dot-product

or the Euclidean distance are used as similarity measure

between clusters. Therefore, we decide to use the dot-

product as similarity measure as HOG descriptors are L2-

normalized so in this case the dot-product is equivalent

to the Euclidean distance. Furthermore, the dot-product

also allow us to use other distance measures via explicit

feature maps [24]. Hence, we are also able to compare

HOG descriptors using the Histogram intersection and the

χ2 similarity measures.

Finally, we need to reduce the number of samples used

to create the codebook. Although the memory complex-

ity has been reduced to O(N) the temporal complexity
remains O(N2). In order to improve the algorithm run-

time, we reduce the number of samples extracted at each

character. Instead of using random sampling, we apply the

agglomerative clustering at each character independently

and then we generate clusters by selecting the sub-trees

that have at least R samples. These clusters are then fed

to the general agglomerative tree to generate the final

codebook.

B. Shannon Entropy

Once we have generated the binary tree, we need a

method to partition the nodes in order to obtain the clus-

ters. We want that the partitions are created automatically

from data so the user does not need to tweak another

parameter. Since the samples have the character label

besides the descriptor, we can use this information to

partition the tree into semantically meaningful clusters.

Therefore, we calculate at each node the Shannon entropy,

as in [25]:

Sc(L, T ) =
2Ic,t(L)

Hc(L) +Ht(L)

where Hc is the class entropy of the samples at the

node, Ht is the entropy of the samples division at the two

children and Ic,t(L) is the mutual information of the split:

Hc(L) = −
∑
c∈C

nc

n
log2

nc

n
,

Ht(L) = −nl

n
log2

nl

n
− nr

n
log2

nr

n

Ic,t(L) = Hc(L)− nl

n
Hc(Ll)− nr

n
Hc(Lr)

Here, L, Ll and Lr respectively denote the set of

samples at the current node, the left child and the right

child and, n, nl, nr and nc denote the cardinality of these

sets with nc being the number of samples within category

c.

Using this measure, the higher the Shannon entropy

the better are the categories distributed between the two

descending nodes. Then, we compute this measure at

each node and we partition the trees at the nodes where

the Shannon entropy attains a local maxima, i.e. the

nodes where it is higher than its direct ascendants and

descendants. In order to avoid generating small clusters,

nodes which do not have at least 50 samples are not

considered. By following this procedure, we are able to

generate clusters automatically and these clusters have

some semantic significance. In Fig. 1, we see an example

of the descriptors grouped in two different clusters. In

this example, we can see that clusters contain elements

from multiple characters as the features sampled from the

image are too small and do not contain enough information

to perfectly discriminate between the different characters.

Although a perfect semantic separation is more desirable,

it is not possible to achieve without a more complex de-

scriptor or kernels (e.g. χ2-Radial Basis Function kernel).

Finally, applying the measure locally results in clusters

being nested. This means that a cluster can be a sub-

tree from another larger cluster so, we may need multiple

centroids to represent them properly. For example, the

second cluster in Fig. 1 has a nested cluster and thus it is

represented by multiple centroids.

III. DESCRIPTOR ENCODING

Once we have created the codebook we need to define

how descriptors are going to be represented as visual

words.

A. Codeword Encoding

We are going to represent descriptors using first deriva-

tive encoding [26], [27], i.e. descriptors are represented as

the residual between the encoded descriptor and a selected

codeword. So we need to represent that codewords can be

represented by a centroid, but our agglomerative codebook

can generate nested codewords. Therefore, codewords are

represented by as many centroids as necessary to ensure

that no overlapping exist. In Fig. 2, we can see a simplified

A

C

B D

C

B D
A0

A1

CODEWORDS CENTROIDS

Figure 2: Schema of the agglomerative tree codewords and

centroids.

representation of an agglomerative tree where codeword

B is nested inside codeword A. Here, codeword A is

represented by two centroids, A0 and A1, instead of the

centroid at the highest level of the sub-tree so there is

no overlapping with centroid B. In Fig.1, we can see a
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real example of the centroids representing two different

clusters.

Then, the contribution of each centroid Ci of the

codebook to encode a given descriptor d is given by

wi = W (d,Ci) = exp

(
− (1− sim(d,Ci))

2

2σ2
i

)

where sim(d,Ci) is the similarity measure between the
descriptor and centroid and, σi is the standard deviation of

the similarity of the elements within the centroid. In order

to increase the sparseness of the encoding, we set to zero

the different weights wi that satisfy that wi/wmax < t
where wmax is the maximum weight and t ∈ [0, 1] is a
threshold. When t = 0 we use all centroids to encode a
descriptor while when t = 1 we only use the most similar
centroid. Finally, weights are normalized to ensure that the

sum of all weights is 1.

These weights multiplied by the residuals between the

descriptor and the centroids are the resulting encoding.

Since a codeword may be represented by several centroids,

the contributions of all its centroids are accumulated to-

gether. For instance, in the example at Fig. 2 the codebook

only has 4 codewords thus the histogram of visual words

has 4d dimensions where d is the dimensionality of the
descriptor. Then, the weighted residuals from A0 and A1
are both accumulated in the first d dimensions of the
histogram.

B. Approximate Codebook

The encoding method previously described is com-

putationally intensive as it requires computing multiple

exponential weights to encode a single descriptor. In order

to reduce the computational cost of the descriptor encod-

ing step, we propose the use of an additional codebook

which is used to approximate the descriptors. We use a

Hierarchical k-Means (HKM) similar to the Vocabulary

Tree [28] to approximate the descriptors. The codebook

has degree 10, we limit it at a maximum depth of 8 levels

and one million leafs. It is build using a priority queue

that prioritize nodes which are more populated. In this

codebook, we use the Euclidean distance to compare the

descriptors regardless of the distance measure used by the

agglomerative codebook.

The main idea is to then use the leafs of this codebook

as an approximation of the encoded descriptors. Then,

we pre-compute the encoding of the leaf descriptors since

we know them a priori. Thus, instead of computing the
weight of each centroid of the agglomerative tree for a

given descriptor, we only need to traverse the HKM tree

and use the weights stored at the leaf. Although we are

adding quantization errors when following this procedure,

we are also greatly reducing the encoding computational

cost which may be a desirable trade-off when dealing with

large collections.

IV. RESULTS

We generate the codebook using ten different true type

fonts which generate between 4000 and 7000 descriptors

per character. We group these descriptors in clusters

of at least ten descriptors (i.e. R = 10) reducing the
contribution of each character to 450-800 descriptors.

Therefore, the algorithm only needs to aggregate around

50000 descriptors in each evaluated configuration. In all

experiments, the Bag-of-Visual-Words (BoVW) signature

is generated by densely sampling HOG descriptors each 4

pixels from squared regions of 16, 24, 32 and 40 pixels,

a spatial pyramid with 5 horizontal partitions and power

factorization at 0.5. We have evaluated the codebooks

obtained using different descriptor dimensionality, filter

ratio and similarity measures on the George Washington

dataset [29], [15]. The dataset consist of 20 pages with

4860 segmented words. The performance of the retrieval

system is evaluated computing the mean Average Precision

(mAP) score for any word snippet that appears at least

twice in the dataset and returning the overall performance

of the system as the mean of mAP scores. In Fig. 3,

we plot the results obtained by five different queries. All

results have been obtained on a Linux box with an Intel®

Xeon® E5-1620 CPU running at 3.50GHz and 16 Gb of

RAM.

r ≥ 0% r ≥ 80% r ≥ 90% r ≥ 95%

D
im
.

Simil. EUC HIS EUC HIS EUC HIS EUC HIS

3
2

CHI 61.6 61.6 68.7 65.1 68.5 65.0 68.2 64.4
EUC 40.1 41.9 52.3 55.8 52.7 54.4 54.6 56.6
HIS 50.1 52.3 67.3 65.9 68.2 66.5 68.2 66.0

1
2
8

CHI 47.7 50.6 69.7 67.4 70.9 68.0 71.0 68.1
EUC 40.5 42.2 54.1 58.2 57.7 62.1 59.8 63.3
HIS 43.0 45.3 68.1 66.3 70.5 67.7 70.7 67.5

Table I: mAP scores at the Washington dataset.

In Table I, we show the mAP score obtained when

generating the codebook with different configurations. The

dimensionality column (Dim.) specifies the dimensionality
of the HOG descriptors. In this experiment, we have tested

them using 2 × 2 and 4 × 4 spatial bins resulting in de-
scriptors of 32 and 128 dimensions. The similarity column

(Simil.) indicates which similarity measure has been used
to compare the descriptors when creating the agglomera-

tive tree. The abbreviations CHI, EUC and HIS correspond
to χ2, Euclidean and Histogram intersection respectively.

The mAP scores are divided into the ratio used to filter

weights wi/wmax ≥ t where t ∈ {0%, 80%, 90%, 95%}.
When r ≥ 0% we accept all weights while we filter

all weights which are smaller than 0.95 of the maxi-

mum weight in when r ≥ 95%. The similarity between
the histograms of visual words is calculated using both

Euclidean distance and Histogram Intersection similarity

measures. The obtained results show that creating a more

sparse encoding by filtering out small weights improves

the performance of the algorithm. It also shows that

using χ2 or Histogram intersection to compare descriptors

consistently gives a better codebook while the Euclidean

distance is better when comparing the histograms of visual

words. Comparing both descriptors, we see that the higher

dimensional descriptor provides a better accuracy. How-
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mAP First 30 images.

100.00%

97.86%

79.88%

46.18%

35.58%

Figure 3: Some qualitative results obtained in the George Washington dataset.

Dim. 32 128
Sim. CHI EUC HIS CHI EUC HIS

823 741 788 852 787 849

Table II: Sizes of the evaluated codebooks.

ever, the performance increase is modest so depending on

the application a smaller descriptor may be more suitable.

Comparing these results with other word spotting methods,

we can observe that proposed algorithm outperforms most

unsupervised spotting methods [16]. We can also see that

the proposed codebook shows a similar performance to a

carefully crafted BoVW. For example, we reach a 71.0%
mAP score while standard BoVW reaches 72, 35% mAP.

However, our BoVW signature is more compact as we

use less spatial bins (5 vs. 24 spatial divisions) and the

codebook is much smaller. The codebooks generated by

our method have between 750 and 850 codewords (see

tableII) while a standard k-means codebook uses 4096

codewords (i.e. the k-means codebook is between 4,8 and

5,4 larger).

Finally, the codebooks using HOG-32 descriptors need

on average 7 minutes to be created while HOG-128

require around 40 minutes on average. The encoding

runtime for HOG-128 descriptors takes around 490 ms

on average to encode a word snippets. This runtime can

be reduced by more than an order of magnitude when the

descriptors are approximated by a HKM codebook. In this

case, encoding takes around 9.2 ms an average per word

snippet. However, approximating the descriptors have the

drawback that the mAP score consistently drops a 3-5%

in all configurations.

V. CONCLUSIONS

In this paper, we have proposed a method to auto-

matically generate a codebook from synthetic data. The

main idea is to create a codebook which is database

agnostic, i.e. a codebook which has a good performance

independently from the data which is used to create

it. This is important when processing large collections

of documents as creating a codebook can be extremely

time consuming. Thus, our algorithm is able automat-

ically determine the amount and size of the clusters

by incorporating semantic information into the codebook

generation process. Besides, we have proposed the use of

an additional codebook to approximate the descriptors and

greatly reduce the descriptor encoding computational cost.

The experimental results show that the codebook attains a

similar performance to other unsupervised bag-of-visual-

words spotting algorithms.
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