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Abstract—Mobile document image acquisition is a new trend
raising serious issues in business document processing workflows.
Such digitization procedure is unreliable, and integrates many
distortions which must be detected as soon as possible, on
the mobile, to avoid paying data transmission fees, and losing
information due to the inability to re-capture later a document
with temporary availability. In this context, out-of-focus blur is a
major issue: users have no direct control over it, and it seriously
degrades OCR recognition. In this paper, we concentrate on
the estimation of focus quality, to ensure a sufficient legibility
of a document image for OCR processing. We propose two
contributions to improve OCR accuracy prediction for mobile-
captured document images. First, we present 24 focus measures,
never tested on document images, which are fast to compute
and require no training. Second, we show that a combination of
those measures enables state-of-the art performance regarding the
correlation with OCR accuracy. The resulting approach is fast,
robust, and easy to implement in a mobile device. Experiments
are performed on a public dataset, and precise details about
image processing are given.

I. INTRODUCTION

Document image acquisition with mobile devices, espe-
cially smartphones, is becoming a essential entry-point in
digitization workflows for companies. Despite the evident
appeal of on-the-go digitization and near-instant transfer of
document images, three major challenges are still to overcome
to release the potential of mobile capture for document images.

Digitization distortions are, in the case of mobile-captured
images of recent documents, the main cause of perturbation of
the image signal. Among the most common distortions, out-of-
focus blur is particularly delicate. It seriously alters legibility,
both for humans and OCR systems, and is linked to camera
internal behavior, contrary to motion blur, perspective distor-
tion or lightening conditions over which the user has more
control. To prevent bad performance in document processing
workflow, the legibility of a mobile-captured document image
must be controlled as early as possible in the process.

Mobile data transmission fees impose a strict selection on
the images to transfer over a network. As a consequence, such
legibility control, must be performed on the mobile device, to
avoid sending unusable data.

Mobility situation changes the way people capture and
archive documents: the availability of some document for
digitization may be temporary, and depend on the current

location of the mobile user. Any control on the captured images
must therefore be performed during or right after the capture,
to avoid missing the opportunity for another capture.

Such an efficient control should enable the notification of
a poor shot to the user after the capture, and explanations
for such evaluation. In the case of a real-time evaluation, it
may be possible to automatically trigger the capture when the
conditions are optimal, or even to assist the user during the
capture with precise direction like “move closer”, or “light
too low”, as suggested in [1].

In this paper, we concentrate on the evaluation of the
fitness of a mobile-captured machine-printed document image
for later OCR recognition, regarding the amount of out-of-
focus blur it contains. We are then interested in OCR accuracy
prediction, which is a particular case of no-reference Document
Image Quality Assessment (DIQA), as defined in [2]. Here “no-
reference” means that only the test image is available.

Our claim is that mobile document image acquisition
requires lightweight and robust methods, which can be im-
plemented using a combination of simple focus measures
developed in others communities, and not yet applied to
document images.

This paper is organized as follows: Section 2 reviews
existing work and shows that interesting focus measures from
the Shape from Focus and Autofocus communities have not
been applied on document images yet. Section 3 explains the
basic pre-processing we perform on document images before
computing those measures. Section 4 presents those measures.
Section 5 explains how we normalize and combine them.
Section 6 presents our experimental protocol and the results
we obtain on a public dataset. Section 7 discusses those results.

II. RELATED WORK

A good introduction to DIQA subcategories is presented
in [2]. This study shows that, despite some prior work on OCR
accuracy prediction for scanned document images, only a few
approaches deal with camera- or mobile-captured images, and
even less are considering out-of-focus blur.

In the Document Analysis and Recognition (DAR) commu-
nity, a major effort to better understand the effects of out-of-
focus blur on OCR accuracy in presented in [3]. The authors
introduce a dataset of mobile-captured document images with



various amounts of out-of-focus blur for which they computed
the accuracy of three different OCR systems. They compare
the performance of three methods on this dataset: Q (presented
in [4]) which relies on singular value decomposition of local
image gradient matrix, ADoM (presented in [5]) which is
based on the detection of edges with gradient analysis, and
CORNIA (presented in [6], [7]) which is based on an automatic
feature selection, sparse representation, and a regression model
to construct generic predictors over images.

We believe that, while the CORNIA method is expected
to perform better thanks to its strong machine-learned model,
it is less suitable for mobile processing due to its memory or
CPU usage, and “lightweight” methods should be considered
separately in our case. A recent improvement over this method
was recently proposed in [8], with a real-time feature extraction
step. However, the regression step still requires important
resources, and, more generally, the authors themselves admit
that this kind of approach relies heavily on the quality of the
training set. Such dataset is hard to produce, and the coverage
of OCR accuracy values, as well as the number of elements,
may limit the performances of training methods.

In the field of OCR accuracy prediction for mobile-
or camera-captured document images, another method was
proposed in [9]. The authors define features based on edge
gradient and height-width ratio for words and characters.
They use a Support Vector Regression to calculate the word
error rate for a given document. While the evaluation method
described, focusing on decision making, is highly relevant, the
learning step and some dependence to character shapes limits,
in our opinion, such method.

An interesting study of available focus measures, for an
entirely different purpose, is presented in [10]. In this work,
the authors present more than 30 “focus operators” and their
application to recover depth information for each pixel in natu-
ral images. The authors not only perform a great comparison of
run-time properties, weaknesses and strengths of each method:
they also propose to group them in 6 main categories which
exhibit consistent behavior under the same perturbations like
image contrast, image noise, or image saturation.

We therefore propose to investigate the application of those
mature focus measures on document images to estimate out-
of-focus blur, and its correlation with OCR accuracy. We
are particularly interested in evaluating how those measures
can be combined: as they are intended to be computationally
efficient and were sometimes even used for autofocus systems,
it really makes sense to try to form a global method which
would be more robust to real capture conditions, and overcome
individual weaknesses. To enable the experimental evaluation
of our contribution, we used the public dataset presented in [3].

III. SIMPLE PAGE SEGMENTATION

Since we are dealing with mobile-acquired images, the
incoming images do not correspond just to the digitized
document page, but usually contain some background that
is irrelevant for us. Page segmentation not being the main
topic of our research, we just implemented a simple yet
effective page detection that performs well enough on the
tested images. Color images are first transformed to gray-
scale by computing the luminance of the image. By applying
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Simple page segmentation. a) Mobile-acquired document, b) median
filtering, c) final page segmentation.

a)

Fig. 1.

a median filter with a large enough structuring element we are
able to get rid of the text from the page while keeping the white
background of the page (c.f. Fig. 1b)). In our experimental
setup, the structuring element was a 31 x 31 rectangle. By
thresholding this image with Otsu’s method and getting the
largest connected component we obtain the page’s bounding-
box that is used for segmenting the page (c.f. Fig. 1c)).

Of course, such simple techniques will fail for severely
distorted images presenting highlights and shadows, strong
perspective changes, or if the page is not highly contrasted
from the background, but provided accurate enough results in
our test scenario.

IV. Focus MEASURES

In [10], the authors distinguished 6 families of focus
operators. Gradient-based (GRA) and Laplacian-based (LAP)
operators estimate the sharpness and the amount of edges in
an image using gradient or first derivative, and, respectively,
second derivative or Laplacian. Wavelet-based (WAV) and
DCT-based operators are based on discrete wavelet transform
and discrete cosine transform (DCT) coefficients. Statistic-
based (STA) operators are based on local descriptors (texture
analysis, in particular). Finally, the miscellaneous (MIS) oper-
ators are the ones which do not fit in the previous categories,
due to some dependence on global indicators like histograms
or image contrast.

Grounding our work on the focus measure operators pro-
posed in [10], we selected 24 techniques which appeared as
most promising. Whereas the techniques used for shape from
focus in [10] need to produce pixel-level measures, we just
need a global estimation of the focus for the whole image. We
also discarded the DCT-based operators, due to their specificity
to some image and video formats, or their processing time.
Finally, some preliminary experiments led us to filter out the
operators with bad performances on document images.

The Table I lists the focus measures we considered in our
experiment, along with the abbreviations from [10] where their
exact formulation can be found.

V. FEATURE FUSION

Even though the measures listed above are state of the
art auto-focus techniques, some of them might not correlate
well with the output of an OCR engine. However, since it
is difficult to a-priori judge which ones will perform better
than the rest and which is the best amount of features to



USED FOCUS MEASURES AND THEIR ABBREVIATIONS FROM [10].

TABLE 1.
Focus operator Abbr.
Gaussian derivative GRAI
Gradient energy GRA2
Thresholded absolute gradient GRA3
Squared gradient GRA4
Tenengrad GRA6
Tenengrad variance GRA7
Energy of Laplacian LAP1
Modified Laplacian LAP2
Diagonal Laplacian LAP3
Variance of Laplacian LAP4
Sum of wavelet coefficients WAV 1
Variance of wavelet coefficients ~ WAV2

Focus operator Abbr.
Ratio of wavelet coefficients WAV3
Gray-level variance STA3
Gray-level local variance STA4
Normalized gray-level variance STAS
Histogram entropy STA7
Histogram range STAS8
Brenner’s measure MIS2
Image curvature MIS4
Helmli and Scherer’s mean MIS5
Steerable filters-based MIS7
Spatial frequency measure MIS8
Vollath’s autocorrelation MIS9

combine, we have tested all the possible feature combinations.
Being S = {FMy,FMs,...,FM,} the set of all n = 24
focus measures F'M applied to an incoming image under
test, we tested all the possible combinations 7' of this set.
We denote T,,, with m € [1, n] all the possible subsets of
measures formed by taking m elements from S. Particularly,
T3, with j € [1, ()] will denote the j-th subset having
m elements. Such combinations resulted in testing more than
16 million different configurations. Once we have a subset
of focus measures to combine, we have to face two different
aspects. On the one hand how to normalize the measures so
they fall within a similar range and on the other hand, how to
combine them into a single number.

A. Measure Normalization

Since each of the different focus measures fall within
different numeric ranges, before combining them we must
normalize their ranges [11]. In our experiments we have tested
four off-the-shelf normalization techniques. Given a set of
focus measures 77, with their normalized measures T,J,'L' are
obtained by the following normalizations.

e  Min-max: applies a scaling factor and transforms the
measures in a common range [0, 1]. Being min(7%,)
and maz(T7,) the minimum and maximum of the
scores respectively,

¢ T —min(TY)

Ti = , —
max(T3,) — min(Th,)

Such method is highly sensitive to outliers in the data
used for estimation.

e  Z-score: is one of the most common normalization
techniques. It is computed using the arithmetic mean
w1 and standard deviation o of the given data.

i = Tm

m o

By using the arithmetic mean and standard deviation,
the method is also sensitive to outliers.

e Tanh: is a more robust and efficient normalization
technique that also takes into account the mean and
standard deviation.

. j
T = % {tanh [0.01 : (TmU“ﬂ + 1} .

e MAD: the median and median absolute deviation are
insensitive to outliers and the points in the extreme
tails of the distribution.

Ti’ T3, — median(T3,)
m MAD ’

where M AD = median(|T?, — median(T%,)|).

m

B. Fusion Strategies

After normalizing the response of the focus measures, a
-/ . . .
subset of focus operators 77" can be easily combined in order
to obtain a single indicator by just computing the maximum,
minimum, sum, product, average or median values of this
subset. Formally, we will denote those fusion strategies as

combMAX = max (T,{l/) ,
combMIN = mnun (Tg;’) ,
()
. S/
combSUM = 2 (Tfn ) ,
),
- j
combPROD 1l (Tm ) ,
combAVG = mean (Tfn ) ,
combMED = median (Tﬂ,'l/) .

We will report in the experimental section the results obtained
by each normalization technique and each fusion strategy.

VI. EXPERIMENTAL RESULTS

In order to evaluate our proposal, we have used the publicly
available DIQA dataset [3]. This dataset is composed of 25
documents. Each document has been acquired several times by
a cellphone camera at different focal lengths: some acquisitions
are perfectly focused whereas some others present severe
blurring effects. The final dataset is composed of 175 images
and each of those have been OCRed by three different engines
(ABBYY FineReader, Omnipage and Tesseract). The compari-
son between the OCR output and a manual transcription of the
document permit to obtain the OCR accuracy for each image.
Median Pearson (LCC) and Spearman (SROCC) correlation
factors are provided in order to assess whether the proposed
metrics are in agreement with the obtained OCR accuracies,
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Fig. 2. Example of a portion of a document from the DIQA dataset with
different blurring levels and their OCR outputs.
TABLE II. MEDIAN LCC FOR DIFFERENT NORMALIZATIONS AND
FUSION STRATEGIES.

Fusion method ~ Normalization

Min-max Z-score Tanh MAD
CombMAX 0.87439 0.86364  0.86363  0.86679
CombMIN 0.89791 0.9378 0.93779  0.93092
CombSUM 0.92056 0.92164  0.92165  0.91945
CombPROD 0.87073 091372 0.92175  0.86989
CombAVG 0.92056 0.92164  0.92165 091945
CombMED 0.92056 0.92164  0.92165 091945

and thus be useful to predict the OCR behavior. We can see
an example of this dataset in Fig. 2.

We can see in Table II the results that we obtained for
each normalization and fusion strategies in terms of the median
Pearson correlation coefficient (LCC). Results in Table II just
report the best feature combination for each normalization and
fusion. In most of the cases, the best performance was reached
by just combining between two and four of the 24 possible
focus measures. We can appreciate that despite the selected
normalization, the fusion strategy that performs best is usually
the combMIN. Thus, for a given set of focus measures, just
taking the most pessimistic one that considers the document
more out of focus, is the strategy correlates the best with the
OCR accuracies.

In general, the focus measures that worked the best were
the ones from the gradient family. In particular, our best
configuration used a subset of the four focus measures T =
{GRA1,GRA2,GRA4,ST A8}. The time taken to compute
the four measures and its normalization and combination in a
desktop PC under an unoptimized Matlab code was 0.61 secs.
in average.

In Table III we compare our results with the state-of-
the-art methods presented by Kumar et al. in [3]. We can
appreciate that the proposed method outperforms both Q [4]
and ADOM [5] methods in terms of median LCC and me-
dian SROCC. However, the CORNIA [7] method that uses
machine learning techniques in order to learn how to predict
the OCR accuracy still performs better than the metric-based
approaches.

We report in Table IV the obtained median LCCs for the
three different OCR engines in the DIQA dataset. The fact that
no substantial changes can be appreciated between ABBYY
and Tesseract despite their huge difference in accuracy (c.f.
Figs 4 and 6 in [3]), might indicate that the evaluation protocol
proposed in [3] is biased to produce overoptimistic results.

TABLE III. COMPARISON WITH STATE OF THE ART [3].

Method Learning Med. LCC ~ Med. SROCC
Q Metric-based 0.8271 0.9370
ADOM Metric-based 0.8488 0.9524
CORNIA  Learning-based  0.9747 0.9286
Proposed Metric-based 0.9378 0.96429
TABLE IV. MEDIAN LCC WITH DIFFERENT OCR ENGINES.
Method ABBYY  Omnipage  Tesseract
CombMIN+Z-score  0.9378 0.8794 0.9197

LCCs are computed independently document-wise, i.e. just
considering the 6 to 8 documents for a given document class.
Performance is evaluated then by reporting the median of those
25 LCCs. By reporting the median LCC value, outlier classes
in which the methods might not perform well are disregarded.
If we compute directly the LCC for all the 175 images we
obtain a 0.6467 which compares quite inferiorly to the reached
0.9378.

Finally, we show in Fig. 3 some failure cases. In the image
of Fig. 3a), we obtain a rather low focus measure whereas
the OCR accuracy is beyond 90%. Such low focus measure
is probably provoked by the large white space in this page.
Contrarily, in Fig. 3b) the focus measure is rather high but
the OCR accuracy is low (25%). In this case, most of the text
of the document image is out of focus, but the huge headline
provokes that the focus measure is optimistically high.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a metric-based method for
quality assessment of mobile-acquired document images able
to predict at some extent the accuracy that an OCR engine
will yield. Starting with the hypothesis that by combining
several focus measures from different families we should reach
better performances than just relying on a single metric, we
finally found out that gradient-based features are the ones that
correlate the best with the response of OCR engines. Although
the proposed method outperforms other metrics proposed in the

Feature

Ceramic Microstructural Analysis

ntrol

Ave T

Fig. 3.

Failure cases



literature, methods having a single indicator are still far from
machine learning-based techniques.

In this paper we have dealt with simple combination of the
focus measures, however, maybe better performances could be
further reached with more complex combination strategies such
as a linear combination of the focus measures with learned
weights.

VIII. APPENDIX: SELECTED FOCUS MEASURES

This appendix summarizes the focus measure operators in
which we obtain the best performances. We refer the interested
reader to [10] for the details of the rest of the measures.

A. Gaussian Derivative (GRAI)

The Gaussian derivative focus measure is computed by

o= (IxTy)*+(IxTy)? (1)
(z,y)
with I'; and I'y are the partial derivatives of the gaussian
function
1 2?2 4+ 92
(z,y,0) = Qﬂ_gzexp <%¢2 . )

B. Gradient Energy (GRA2)

The gradient energy is computed as the sum of squares of
the first derivative in the x and y directions

boy= > (L05,5)*+ 1,5, 3)
(4,9)€Q(x,y)

in which Q(z,y) defines a local neighborhood of the pixel
(z,y). The global measure ¢ for the whole image is obtained
by averaging all the ¢, ,

C. Squared Gradient (GRA4)

The squared gradient method computes the first derivative
of the image in the horizontal dimension, squared in order to
increase the influence of larger gradients.

>

(i,5)€Q(z,y)

Pzy = L(i,5)*, |La(i,§)] > T “

D. Histogram range (STAS)
The histogram range is computed as
¢ = max(k|H > 0) — min(k|H > 0), %)

begin H the histogram of the image under analysis.
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