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ABSTRACT
In this paper we tackle the problem of document image retrieval by
combining a similarity measure between documents and the prob-
ability that a given document belongs to a certain class. The mem-
bership probability to a specific class is computed using Support
Vector Machines in conjunction with similarity measure based ker-
nel applied to structural document representations. In the presented
experiments, we use different document representations, both vi-
sual and structural, and we apply them to a database of historical
documents. We show how our method based on similarity kernels
outperforms the usual distance-based retrieval.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Capture—Doc-
ument analysis; H.3.7 [Information Storage and Retrieval]: Dig-
ital Libraries

General Terms
Algorithms

Keywords
Document retrieval, Support Vector Machines, Similarity measure
based kernels, query-by-example

1. INTRODUCTION
Digital libraries usually contain huge amounts of heterogenous doc-
uments. When we consider typewritten documents, OCRs are used
to transcribe them in order to provide access to the text. However,
there are many cases where an OCR can not be used, as for instance
handwritten or graphic-rich documents, hindering the accessibility
to these collections. In this particular scenario, it is interesting to
propose methodologies that aim to retrieve documents by similarity
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at the image level, with respect to a reference one, i.e., a query-by-
example document image retrieval. This is usually accomplished
establishing a distance or similarity measure between documents
in the collection and the query and sorting them accordingly. How-
ever this approach presents some caveats. When retrieving similar
documents, it is usually expected that such documents also belong
to the same category than the query one. For example, when re-
trieving letters, we are interested in obtaining similar documents
that are also letters. If we perform an ordering solely based on the
similarity measure, it is likely that similar documents belonging to
different classes will score better than slightly different documents
from the same class. This is particularly true when documents con-
tain a high inter-class variability.

For this reason, it seems important to take into account the likeli-
hood that documents belong to the same class when performing the
retrieval. To do so, we will make use of Support Vector Machines
(SVMs) that allow us to obtain the probabilities of such document
belonging to any of the classes. Using this information, documents
can be ordered and retrieved by the probability of belonging to the
same class.

The main contribution of this work is the comparison between both
query-by-example ways of retrieving documents. The first one just
uses a similarity measure between documents to check their prox-
imity to a query document. The second one makes use of SVMs
to compute the probability of each document of belonging to every
specific document class and then sort documents not by proximity
but by probability of belonging to the same class. In this way, docu-
ments that are unlikely to belong to the same category will not rank
high even if their distance is low. In the same way, documents that
have a high probability of belonging to the same class will have a
higher rank, even if the distance between them is high.

In order to test both procedures in different scenarios, we have
used three different document representations, namely, a vector-
based representation which makes use of a densities decomposition
[9] and two structural representations, the Minimum Weight Edge
Cover (MWEC) [10] and the Polar Graph representation [7], along
with their associated distances.

Classification of structural representations of documents via SVMs
is not straightforward. To overcome this problem, kernels for struc-



tured data can be used. Then, to make the comparison as fair as
possible and to relate both ways of retrieving documents, we have
considered several kernels for structured data which directly de-
pend on a similarity measure between documents. We finally show
how this way of tackling with document retrieval outperforms the
usual distance-based one.

The rest of the paper is organized as follows. Section 2 is devoted
to formalize which is the protocol we use for retrieving documents
after a probability of belonging to each class is computed for all
documents. Such computation is done using SVMs in conjunc-
tion with similarity-based kernels which are introduced and sum-
marized in Section 3. Following we describe, in the experiments
section, the database we have used, the document representations
we have chosen, the training and testing protocols and the obtained
results. Finally, in Section 5, the conclusions of the work are out-
lined.

2. DOCUMENT RETRIEVAL
The Document Image Retrieval problem has been reviewed by Do-
ermann in [4], by Mitra and Chadhuri in [13] and by Marinai in [12].
These authors identified two different retrieval paradigms, namely,
the recognition-based retrieval and the similarity-based retrieval
schemes. In the first case, document image analysis techniques are
used to extract the documents’ contents. These contents can be of
textual nature (by the use of an OCR) or can be semantic meta-data
(e.g. keywords, predefined document categories, etc.). In these sys-
tems the query formulation is done at textual or symbolic level. The
major drawback of this paradigm is that the retrieval performance
relies on the recognition ability which in some documents (e.g. his-
torical or handwritten documents) might be low. On the other hand,
we have the similarity-based retrieval systems which expect a doc-
ument image to act as query. They try to retrieve similar documents
to the query image without explicitly recognizing the documents’
contents nor manually annotating the documents with predefined
meta-data. Such query formulation can be referred as query-by-
example. These methods, however, completely ignore the notion
of document categories which in some cases might be very useful.
We propose in this paper a combination of both strategies, i.e. a
query-by-example system which also uses a document categoriza-
tion. By these means we allow a retrieval based on the probability
that the query document belongs to a certain class.

Given a query document q, we want to retrieve the documents in the
dataset sorted with respect to this query. Typically such sorting is
made by the proximity of the elements to the query object. For such
task, some document distance must be defined, and this distance
will depend on the document representation. For instance, in the
case of graph-based representations, the graph edit distance could
be a suitable choice. For fixed length representations, e.g. based
on a densities decomposition [9] or the run-length histograms [11],
histogram distances as χ2 could be used.

We tackle this task in a different way. Instead of a proximity crite-
rion we take the probability of two documents of belonging to the
same class. Specifically, we proceed in the following way. Using
kernel machines (particularly, SVMs), every document can be rep-
resented (after training and classification) as a vector of probabili-
ties, where each entry refers to the probability of belonging to a cer-
tain class. Formally, given a set of classes C = {c1, c2, . . . , cN}
and a document d, the output of classification is a vector

d ∼ ( d1, d2, . . . , dN ), (1)

where di is the probability of the document d to belong to class ci,
di = P (d ∈ ci), and where

∑N
i=1 di = 1.

After this step, we rank all the documents with respect to the query
document q by computing, for each document t, the probability
of belonging to the same class, this is, by calculating P (C(q) =
C(t)). Given a document t, the probability that q and t belong to
the same class is

P (C(q) = C(t)) = P (q, t ∈ c1) ∪ · · · ∪ P (q, t ∈ cN )

=
N∑
i=1

P (q, t ∈ ci) =
N∑
i=1

P (q ∈ ci) ∩ P (t ∈ ci)

=
N∑
i=1

qi · ti = ⟨q, t⟩, (2)

where ⟨·, ·⟩ denotes the standard inner product. Note that the in-
ner product over normalized vectors corresponds to the cosine of
the angle between such vectors, which has already been used as a
similarity measure in different contexts.

Training and classification of documents with fixed-length repre-
sentations using Kernel Machines is straightforward. However,
their use over structured data as graphs is not trivial, and kernels
for structured data must be used. Section 3 describes some known
basic kernels for this kind of structures and how they will be used
in our approach.

3. BACKGROUND ON KERNELS
In this paper we adopt a kernel-based approach for document re-
trieval. This section is devoted to summarize the main concepts
related to kernel machines and the kernels we have used.

3.1 The kernel trick
Kernel machines are a wide set of machine learning techniques that
have been lately gaining a lot of popularity. Their main advantage
over other techniques is that they do not necessarily need a vecto-
rial representation of data but other kind of representations, such
as strings or graphs, are also supported. Kernel machines work by
defining a similarity measure between pairs of patterns to be pro-
cessed; this measure is a kernel function. On the other hand, every
data analysis method that depends only on inner products between
pairs of objects can be easily converted into a kernel machine by
changing the inner product for a kernel function: such procedure is
called the kernel trick.

This fact holds in a theorem which claims that every kernel can
be understood as an inner product in an implicit Euclidean space
where data is embedded. In a formal way, given a kernel function
k : X × X → R, there always exists a map ψ : X → H such that

k(x, y) = ⟨ψ(x), ψ(y)⟩. (3)

Here by, X is the space of objects or patterns under study and H is
an unknown -in the sense of implicit- inner product space.

Support Vector Machines are a good representative of kernel ma-
chine where the kernel trick plays an important role. Provided a
positive definite kernel, SVMs separate classes of patterns by maxi-
mizing margins using optimal hyperplanes in the implicit Euclidean
space of the kernel [15].

3.2 Kernels based on similarity measures



In this paper, we are essentially working with similarity measures
between document layouts. As we just said, kernel machines -and
SVMs in particular- need to define a similarity measure between
documents, a kernel function. Also, as we already said, we want
to compare both ways of retrieving documents, namely, a distance-
based and a kernel-based. This immediately suggests the use of ker-
nels that depend on similarity measures. Some examples of these
kind of kernels are described in [14] where kernels between graph-
based representations are defined using graph edit distance as the
similarity measure. We have used some of these kernels in our
work, which we will now summarize.

Given d(x, y) a similarity measure between two documents, in
which similar documents will have low similarity or distance val-
ues and dissimilar documents will have high values, we consider
the functions

k1(x, y) = −d(x, y) (4)

k2(x, y) = −d(x, y)2 (5)
k3(x, y) = exp(−d(x, y)) (6)
k4(x, y) = tanh(−d(x, y)). (7)

These functions try to follow the idea of giving high kernel values
when objects are similar and low kernel values when they are dis-
similar. This can be seen as a generalization of the inner product in
an Euclidean space, where vectors pointing in the same direction
have high inner product values and vectors pointing in opposite di-
rections have low inner product values.

We have also considered, in a similar way as it is done in [1], an
adaptation of the common Gaussian kernel for vectorial data. This
is done by replacing the Euclidean distance of the vectors by the
similarity measure of the objects we consider. It leads to the fol-
lowing kernel

k5(x, y) = exp

(
− 1

2σ2
d(x, y)2

)
. (8)

3.3 Discussion and a reference kernel
The kernel functions described in the previous section are, in gen-
eral, non-positive definite. This fact does not fit in the mathematical
foundations of the SVMs technique in which the kernel functions
need to fulfil certain properties, such as positive definiteness and
symmetry. In that case, kernels are called valid kernels. However,
there are theoretical evidences showing that SVMs learning in con-
junction with non-positive definite kernels may have a clear inter-
pretation of hyperplane classifiers, not by margin maximization in
Euclidean spaces, but by minimization of distances between con-
vex hulls in pseudo-Euclidean spaces [8]. It is also worth noticing
that the use of such functions often leads to good results as shown
in [3], which agrees with our results as it will be shown later.

Nevertheless, for the sake of completeness of the work and due to
the fact that our retrieval approach is taken from a kernel point of
view, we have also used a valid kernel in our experiments. This ker-
nel also depends on the similarity measure between the documents
but in a rather different manner. The kernel is obtained after explicit
embedding of the documents in a vector space. Then, the kernel is
computed as the regular inner product in this vector space. The em-
bedding is performed based on the distance of the documents to a
given set of prototypes [2], as described in the following.

Formally, let {pi}ni=1 ⊆ X be a set of object prototypes or repre-

sentatives. Given an object x ∈ X the embedding of x in a vector
space is defined by

ϕ :X → Rn

x 7→ ϕ(x) = (d(x, p1), . . . , d(x, pn)). (9)

Using embedding (9) we just consider the inner product in the new
vector space, leading to the last kernel we have taken into account:

k6(x, y) = ⟨ϕ(x), ϕ(y)⟩. (10)

4. EXPERIMENTS
In this section we will describe the experiments performed to com-
pare both query-by-example retrieval methods, ordering by dis-
tance and ordering by same class probability. Subsections 4.1 and
4.2 deal with the dataset we will be using and the different doc-
ument representations we have used. Subsection 4.3 explains the
experimental setup and training and testing protocols, and finally
Subsection 4.4 presents the obtained results.

4.1 Dataset
To evaluate these retrieval methods we will test them against the
Girona Archives database. The Girona database is a collection of
documents from the Civil Government of Girona, in Spain, that
contains documents related to people going through the Spanish-
French border from 1940 up to 1976 such as safe-conducts, arrest
reports, documents of prisoners transfers, medical reports, corre-
spondence, etc. Even if it is a mostly-text database, in this case
most of the pages also have images like stamps, signatures, etc, in
a non-manhattan disposition. We have used a subset of the database
which contains 743 images and is currently divided in 8 differ-
ent categories. Some of these images are slightly skewed, but in
most cases the skew is almost non-existent. Some samples of the
database can be seen in Figure 1.

4.2 Document representations
For this task, we will use two structural representations based on the
layout of the documents and one representation based on the visual
appearance of the document. The first structural representation is
the Minimum Weight Edge Cover (MWEC) [10], a distance-based
on the assignment problem between regions (see Figure 2) with
an O(n3) cost. The second one is the Polar Graph representation
[7], a simple complete bipartite graph representation of the regions
(Figure 3) which is rotation invariant and where distance between
layouts is based on cyclic dynamic time warping and can be com-
puted in O(n2).

For comparison reasons, we will also use a representation not based
on structural features but on visual ones. We will use a densities
decomposition of the document [9] as seen in Figure 4 and use
the χ2 distance to compare the resulting histograms. Furthermore,
since densities decomposition already provides a fixed-length fea-
ture vector, we will also perform a class probability ordering based
on the results of classifying those vectors directly with an SVM
without using distance-based kernels.

Since we want to use structural features of the documents, a first
step will consist of obtaining the physical layouts of these docu-
ments. Some features of the document, such as its non-manhattan
disposition, noisy pages, handwritten texts, etc, make the segmen-
tation difficult. We have used our own segmentation procedure
based on the selective CRLA [16], plus a pre-segmentation step,
the diagonal split, and a post-processing step, consisting of cluster-
ing the regions using Voronoi clustering. The whole procedure is



Figure 1: Different categories of the Girona database.

explained in [6]. Unfortunately, due to the database characteristics,
the results are not very accurate and some segmentations present
obvious problems. A second segmentation has been manually cre-
ated in order to test the distance measures under ideal conditions.

4.3 Experimental setup
For the experimental evaluation, 60% of the documents have been
assigned to a train set and 40% to a test set. All the experiments
have been performed in a ten fold fashion where different train and
test partitions have been chosen each time.

4.3.1 Training protocol
For both structural representation, we will train one SVM for each
of the distance-based kernels previously presented. In the case of
k6, where a set of prototypes is needed, the whole train set will
be used as prototypes. A four-fold cross-validation over the train
set has been used to obtain the best parameters for each kernel,
and then SVMs have been trained using those parameters over the
complete train set. In the case of the densities decomposition, we
will follow the same procedure using the χ2 distance between his-
tograms. However, since in this case the densities are already a
fixed-length vector, we will also train an SVM with a radial basis
function kernel over the original densities vectors without using the
distances between them. Again, a four-fold cross-validation over
the train set has been used to find the optimum C and γ parame-
ters.

4.3.2 Testing protocol
Using the trained SVMs, we can obtain the class probabilities for
each of the documents in the test set. With this information, we

Figure 2: MWEC assignment among regions of two documents.

can make a query for each of the documents, retrieving all the re-
maining documents based on our class similarity criteria. A similar
procedure can be applied when we are performing a simple dis-
tance ordering: we will query each of the test documents and order
the remaining ones based on their distance. In order to evaluate
the performance of the proposed method, we use the Receiver Op-
erating Characteristic (ROC) curves [5], which aim to characterize
not only the performance of the retrieval of our method, but the
classification abilities as well.

In order to have only one representative curve for all the docu-
ments and folds, we will first average all the curves belonging to
queries of one particular class, obtaining one curve per class and
fold. Then we will average the fold curves, obtaining one represen-
tative curve per class. Next, we will average the curve classes, ob-
taining one representative curve for the document set. This process
has to be repeated for all combinations of document representations
and kernels. Finally, quantitative information will be obtained from
these curves using common ROC metrics as the average Area Un-
der Curve (AUC) and its mean variation.

4.4 Results
The results of the proposed experiments can be seen in the follow-
ing plots. Figure 5 shows the ROC curves with the MWEC repre-
sentation, both with an automatic and a manually obtained layout.
Figure 6 contains the ROC curves in the case of the Polar Graph,
and finally Figure 7 plots the results using the densities descriptor.
Note that, since the densities description does not make use of the
structural representation, only one plot is necessary.

We can observe that, in general, distance-based kernels work better



Table 1: Results for both automatic and manual segmentation. a) MWEC representation; b) Polar Graph representation. First
columns show the mean AUC. Second columns are the mean of the variance of all AUCs and the thirds show the maximum variance.

MWEC (automatic segmentation)

Kernels AUC mean(σ2) max(σ2)

k1(x, y) = −d(x, y) 0.9068 0.0366 0.1452
k2(x, y) = −d(x, y)2 0.8388 0.0456 0.1840
k3(x, y) = exp(−d(x, y)) 0.6472 0.0761 0.2599
k4(x, y) = tanh(−d(x, y)) 0.5159 0.1171 0.3167
k5(x, y) = exp

(
− 1

2σ2 d(x, y)
2
)

0.6760 0.0298 0.0804
k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ 0.9082 0.0384 0.1070
Dist. ordering 0.7142 0.0415 0.2622

MWEC (manual segmentation)

Kernels AUC mean(σ2) max(σ2)

k1(x, y) = −d(x, y) 0.9765 0.0185 0.0793
k2(x, y) = −d(x, y)2 0.9376 0.0257 0.0694
k3(x, y) = exp(−d(x, y)) 0.8556 0.0758 0.1444
k4(x, y) = tanh(−d(x, y)) 0.7392 0.0416 0.1148
k5(x, y) = exp

(
− 1

2σ2 d(x, y)
2
)

0.9446 0.0158 0.0693
k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ 0.9674 0.0293 0.1301
Dist. ordering 0.8667 0.0297 0.0959

Polar Graph (automatic segmentation)

Kernels AUC mean(σ2) max(σ2)

k1(x, y) = −d(x, y) 0.9011 0.0375 0.0932
k2(x, y) = −d(x, y)2 0.8930 0.0355 0.1102
k3(x, y) = exp(−d(x, y)) 0.9025 0.0384 0.1010
k4(x, y) = tanh(−d(x, y)) 0.9017 0.0371 0.0936
k5(x, y) = exp

(
− 1

2σ2 d(x, y)
2
)

0.9171 0.0427 0.1143
k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ 0.9017 0.0380 0.0839
Dist. ordering 0.8245 0.0323 0.1038

Polar Graph (manual segmentation)

Kernels AUC mean(σ2) max(σ2)

k1(x, y) = −d(x, y) 0.9881 0.0128 0.0290
k2(x, y) = −d(x, y)2 0.9863 0.0101 0.0375
k3(x, y) = exp(−d(x, y)) 0.9868 0.0133 0.0287
k4(x, y) = tanh(−d(x, y)) 0.9874 0.0132 0.0295
k5(x, y) = exp

(
− 1

2σ2 d(x, y)
2
)

0.9807 0.0263 0.0783
k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ 0.9449 0.0252 0.1188
Dist. ordering 0.9106 0.0135 0.0473

a) b)

Figure 3: The Polar Graph representation.

than using the distance ordering. Not only that, but the best kernel
in each case systematically obtains better results than the distance
ordering.

Respect to the kernels, we observe that kernels k1(x, y) = −d(x, y)
and k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ consistently obtain very good re-
sults and usually are the ones that obtain the best scores. The rest
of the kernels look less stable; in some cases they obtain better
scores than kernels k1 and k6, but most of the time they produce
very variable results. See, e.g., k3(x, y) = exp(−d(x, y)) and
k4(x, y) = tanh(−d(x, y)) over the MWEC and Polar Graph rep-
resentations (Figures 5 and 6).

In the case of the densities representation, it should be noted that,
in the best cases, the retrieval using distance kernels and the χ2

distance obtains better results than using the gaussian kernel over

Figure 4: Densities representation at multiple resolutions.

the feature vector representation. In any case, both of them work
better than just ordering the vectors using the χ2 distance.

It is also worth noticing that, as already said in Section 3.3, the use
of non-valid kernels when training an SVM leads to good enough
results. As we can see in the plots, there is no significant difference
between the reference valid kernel k6(x, y) and all the similarity-
based kernels. In general lines, their behaviour is almost the same
in the case of the Polar Graph representation while in the case of
the MWEC and the densities representations the use of the valid
kernel leads always to one of the best results but still other non-
valid kernels retrieve in a similar way.

Numerical results of the AUC of theses ROC curves can be seen
at Tables 1 and 2. We can check that, as expected, the AUC of
the distance ordering rarely improves any of the kernel orderings
and never ranks better than the best kernel. Comparing representa-
tions, we can see that the Polar Graph obtains slightly better results
than the MWEC, even though the relevance of this improvement
is somewhat limited. We see, however, that the Polar Graph looks



Table 2: Densities retrieval results. Columns show the same
results as in Table 1.

Densities representation

Kernels AUC mean(σ2) max(σ2)

k1(x, y) = −d(x, y) 0.9607 0.0266 0.0807
k2(x, y) = −d(x, y)2 0.8621 0.0280 0.1197
k3(x, y) = exp(−d(x, y)) 0.8986 0.0388 0.1930
k4(x, y) = tanh(−d(x, y)) 0.7769 0.0699 0.2245
k5(x, y) = exp

(
− 1

2σ2 d(x, y)
2
)

0.9455 0.0364 0.1482
k6(x, y) = ⟨ϕ(x), ϕ(y)⟩ 0.9385 0.0309 0.1306
Distance ordering 0.8426 0.0314 0.1023
Gaussian kernel 0.9360 0.0345 0.1192
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Figure 5: MWEC ROC curves. One curve per similarity ker-
nel plus another one for distance ordering. Top figure for auto-
matic segmentation, bottom for manual segmentation.

much more stable in reference to the kernel used. While on the
MWEC there is a big difference in the results depending on the
chosen kernel, on the Polar Graph all the kernels obtain very similar
results. Compared to the results obtained with the densities descrip-
tor, we can see that densities obtains better results than structural
methods with an automatic layout segmentations. However, when
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Figure 6: Polar Graph ROC curves. One curve per similarity
kernel plus another one for distance ordering. Top figure for
automatic segmentation, bottom for manual segmentation.

the layout is accurate, both structural methods obtain, as expected,
better results. These tables also contain information about the vari-
ance of the AUC respect to the different queries. We can see that
the even if the average variance is very similar between methods,
the maximum variance is not; the MWEC has higher maximum
variations than the rest of the methods. This indicates that even if
on average they perform similarly, some particular queries under
the MWEC representation have a quite different AUC than the rest,
which can be a problem in some scenarios.

Finally, we show in Figures 8 and 9 some qualitative results of
the distance-based ordering and our proposed retrieval method re-
spectively. We can see the 8 closest documents along with their
distance/probability. Green indicates that the real class of the doc-
ument is the same than the sample one, red indicates that it is not.
We can see that the distance ordering provides documents that, even
if relatively similar, are not from the same class. The class proba-
bility ordering, on the other hand, only produces documents from
the same class as the first results, even if the real classes of the doc-
uments were unknown when performing the retrieval.



Query 4.0888 4.3698 5.3563 5.5990

5.6002 5.7624 5.8338 5.8808

Figure 8: From left to right and top to bottom: query document followed by the eight closest test documents using the distance
ordering criteria.

Query 0.8418 0.8415 0.8180 0.8123

0.7914 0.7901 0.7870 0.7743

Figure 9: From left to right and top to bottom: query document followed by the eight closest test documents using the class probability
criteria.
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k4(x, y) = tanh(−d(x, y))
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Distance ordering
Gaussian kernel

Figure 7: Densities ROC curves. One curve per similarity ker-
nel plus another one for distance ordering and a final one with
a gaussian kernel over the fixed-length visual representation.

5. CONCLUSIONS AND FUTURE WORK
Through this paper, we have shown a method for document re-
trieval, where ordering is based on class similarity. While the com-
mon approaches to this problem involve sorting the documents based
on a distance or dissimilarity measure, this is not always the best
approach. Most of the time, we want documents that not only look
similar but also belong to the same category. That is, a document
that looks similar to the query one but obviously belongs to a differ-
ent class should not be amongst the first retrieved documents. We
address this problem ordering the documents not by distance but by
the probability of documents belonging to the same class. For this
task, similarity-based kernels have been used in the classification
task.

Through the experiments, we have shown that this approach ob-
tains considerably better AUC scores than the distance ordering in
each of the three document used representations, both with auto-
matic and manually extracted layouts. Query examples show that
the class probability ordering, unlike the distance ordering, yields
results that not only look similar but also belong to the same cat-
egory. One drawback of this approach is the need of a predefined
set of categories. It is not unusual that the boundaries between doc-
ument categories are fuzzy, and defining an accurate set of classes
can be a challenging task. In those situations, the use of the simple
distance ordering seems more straightforward. However, the class
probability ordering should still help to improve the results. Future
work will try to address this situation using unsupervised clustering
over the training set. In this way, unlabelled training documents can
be clustered and automatically labelled in order to train the SVMs.
Even if it is unlikely that this will match the approach shown in this
paper, as it contains considerably less information, it will be inter-
esting to compare the results against the basic distance ordering.
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