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ABSTRACT
In this paper we present a method for organizing and index-
ing logo digital libraries like the ones of the patent and trade-
mark offices. We propose an efficient queried-by-example
retrieval system which is able to retrieve logos by similarity
from large databases of logo images. Logos are compactly
described by a variant of the shape context descriptor. These
descriptors are then indexed by a locality-sensitive hash-
ing data structure aiming to perform approximate k-NN
search in high dimensional spaces in sub-linear time. The
experiments demonstrate the effectiveness and efficiency of
this system on realistic datasets as the Tobacco-800 logo
database.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—Graphics recognition and interpretation; H.3.7 [In-
formation Storage and Retrieval]: Digital Libraries;
H.2.8 [Database Management]: Database Applications—
Image databases

General Terms
Algorithms

Keywords
Logo retrieval, Graphics recognition

1. INTRODUCTION
The Document Image Analysis and Recognition (DIAR) field
has devoted, since its early years, many research efforts to
extract information from business documents such as in-
voices, receipts, faxes, etc. Usually, the contributions in this
specific topic just relied on the analysis of the layout struc-
ture of the documents and on the extraction and recognition
of the text. However, in many cases, the graphic elements
that might be present in these documents also convey im-
portant information. In this context, the problem of logo
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recognition is one of the most interesting and with more
promising applications within the field of graphics recogni-
tion.

Given that logos are carefully designed to unequivocally rep-
resent and to easily identify a given corporate image, the
task of recognizing logos appearing in documents is an im-
portant step forward in the identification of the document’s
source. For instance, if a company receives a document con-
taining the logo of a bank, usually this document should be
forwarded to the accounting department, whereas if the doc-
ument contains the logo of a computer supplier, it is quite
probable that the document should be addressed to the IT
department. The recognition of logos can help to introduce
contextual information in order to overcome the semantic
gap between the simple recognition of characters and the
semantic document understanding.

One of the most interesting applications of the recognition
of logos is the organization and indexing of large trademark
databases as the ones they have in the different patent and
trademark offices. These digital libraries might contain mil-
lions of logo images and it is interesting when registering a
new trademark to search if there exist other companies hav-
ing a similar logo design. However, nowadays these immense
image collections are difficult to browse by content. As an
example, the UK Intellectual Property Office website1 of-
fers a way to navigate through the trademark collection by
searching by trademark image class. Each logo is labelled
with a set of previously manually harvested metadata which
enable to search in the collection by a set of predefined la-
bels. The most widely used metadata classification codes
are the ones from the Vienna classification system, devel-
oped by the World Intellectual Property Organization [19].
We can see in Fig. 1 an example of retrieving logos from
the UK Intellectual Property Office website by the category
tree of Vienna codes. This manually annotation of the lo-
gos’ contents has the advantage of clustering the logos by
semantic information, so even if the logos in Fig. 1 are not
visually similar they can be clustered together because they
all represent an owl. However this approach also presents
the drawbacks of being a tedious task, sometimes subjective
and of course very expensive. In addition, the use of man-
ual classification codes is not always distinctive, specially for
abstract or artistic images. In that specific scenario it would
be very interesting if we could use some of the logo descrip-

1http://www.ipo.gov.uk/tm/t-find/t-find-text/



Figure 1: Example of searching logos in the UK Intellectual Property Office website by using the the category
tree of Vienna codes.

tion techniques existing in the literature for the retrieval of
logos by similarity in large trademark databases.

The graphics recognition community has faced for many
years the problem of symbol recognition yielding to good
recognition results even with the presence of noise and other
distortions. However, as pointed by Tombre and Lamiroy
in [20], some challenges remain in this domain. The systems
scalability is one of the main concerns. Usually, recognition
schemes rely on a preliminary learning stage and a subse-
quent classification strategy is used to recognize the input
graphics. In that scenario, it is usual that the recognition
ability of the system is severely impaired as the number of
considered model classes grows. In addition, the logo recog-
nition strategies one can find in the literature usually rely
on a computationally expensive matching step which hinders
their application in large databases.

The main contribution of this paper is to present an efficient
queried-by-example retrieval system which is able to retrieve
logos by similarity from large databases of isolated trade-
mark images. Logos are compactly described by a variant
of the shape context descriptor. These descriptors are then
organized by a locality-sensitive hashing indexing structure
aiming to perform approximate k-NN search in high dimen-
sional spaces in sub-linear time. The use of a hashing tech-
nique allow us to quickly index and retrieve logos by simi-
larity. To conduct the experimental results, we will focus on
the large collection of real-world complex document images
Tobacco-800 [26, 14], which is public available and has a set
of ground-truthed logos with their localization within the
complete documents.

The remainder of this paper is organized as follows: we
briefly review some related work in section 2. In section 3 the
logo description scheme we use is described. Subsequently,
in section 4, we present how the logo descriptors are orga-
nized in the indexing structure to efficiently retrieve logos by
similarity. Section 5 provides the experimental results and
finally section 6 is a summary and discussion of extensions
and future work.

2. RELATED WORK
The existing literature focusing on the problem of recogniz-
ing logos is quite vast within the fields of graphics recog-
nition and shape description at large. One of the first ap-
proaches dealing with logo recognition was the one presented
by Doermann et al. in [5]. In that work, the authors decom-
posed the logos in a set of textual and graphical primitives
such as lines, circles, rectangles, triangles, etc. and described
them by a set of local and global invariants composing a
logo signature which was matched against the logo database.
Many other works relying on a compact description of the
logos and a subsequent matching step can be found. We can
cite as examples the work of Eakins et al. [6] where logos
are described by a set of features extracted from the shape’s
boundaries. In [4], Chen et al. represented logos by line
segment drawings which were then matched according to a
modification of the Hausdorff distance. In [10], Hodge et
al. propose a perceptual logo description, whereas in [21]
Leuken et al. describe logos by the layout spatial arrange-
ment of basic primitives. Recently, in [25], Zhu and Doer-
mann presented a method for matching logo images based
on two different logo descriptions. The shape context de-
scriptor on the one hand, and the neighborhood graphs on
the other. The experimental results are encouraging, the
matching step, however, is extremely computationally ex-
pensive since it involves a point correspondence procedure.
This problem is common to all the works described above,
which are hardly scalable to large collections of trademark
images since they all involve expensive or brute-force match-
ing strategies. We can find in the literature some works that
instead of proposing algorithms for logo matching deal with
the problem of logo retrieval from image databases.

In [23], Wei et al. present a trademark image retrieval sys-
tem which combines a local description of logos by means
of curvature and spatial information, and a global descrip-
tion of the logos by using the Zernike moments. However,
even if the paper is presented as a retrieval application, the
logos’ descriptors are matched by brute force by computing
an Euclidean distance, which makes the system not scalable
to large collections unless an indexing strategy is used to
efficiently access to the descriptors’ data. Another example



of trademark retrieval can be found in [17], where Ravela
and Manmatha represent logo images by a set of histograms
of curvature and frequential information at different scales.
Again, the matching step among logo descriptors is critical,
and in this case, the authors compute the distances between
pairs of logos beforehand.

We propose in this paper a method for efficient logo retrieval
in large databases by using an indexing structure aiming
to retrieve by similarity the feature vectors describing logo
images.

Even if it is not the purpose of this paper, we can also find in
the literature an interesting topic related to logo recognition
which is the localization and recognition of logos appearing
within complete documents without the need of a previous
segmentation step. We can for instance cite the works in
logo spotting of Zhu and Doermann [24] and Rusiñol and
Lladós [18]. Or the ones dealing with trademark detection
in video sequences of Bagdanov et al. [1] and Ballan et al. [2].

3. LOGO DESCRIPTION
We base our logo description on a variant of the shape con-
text descriptor known as the shapeme histogram descriptor.
Each logo is described by a single histogram representing the
frequencies of appearance of a set of specific shape context
descriptors. Let us first briefly overview the shape context
descriptor, and then focus on how we describe logos by the
shapeme histogram descriptor.

3.1 The Shape Context Descriptor in a Nut-
shell

The shape context descriptor was proposed by Belongie et
al. in [3]. This descriptor allows to measure shape similarity
by recovering point correspondences between the two shapes
under analysis. In a first step, a set of interest points has to
be selected from the logos. Usually, a Canny edge detector is
used and the edge elements are sampled in order to obtain a
fixed number of n points pi per logo ℓ. Given these n points,
the shape context captures the distribution of points within
the plane relative to each point of the shape. A histogram
using log-polar coordinates counts the number of points in-
side each bin. For a point pi of the shape, a histogram hi of
the coordinates of the nearby points q is computed as:

hi(k) = #{q ̸= pi : q ∈ binpi(k)} (1)

In our experimental setup, we have chosen 5 bins for log r
and 12 bins for θ. The descriptor offers a compact represen-
tation of the distribution of points relative to each selected
point. Translational invariance comes naturally to shape
context since all the histograms are computed from refer-
ence points. Scale invariance is obtained by normalizing all
radial distances by the mean distance between all the point
pairs in the shape. In order to provide rotation invariance
in shape contexts, angles at each point can be measured
relative to the direction of the tangent at that point. In
our framework, however, we have chosen not to tolerate ro-
tations in order to consider two rotated logos as different
instances.

Once all the n points in a shape are described by their shape
context histogram, in order to match two shapes we have to
find the point correspondences. The simplest way to com-
pute the matching among the two set of points is by using a
bipartite graph matching approach that puts in correspon-
dence points having similar shape context descriptions. An
example of the shape context descriptor and the results of
the point matching by using the Hungarian method can be
seen in Fig. 2. In order to obtain a more robust matching,
the most usual technique involves the computation the affine
transform that matches the set of points from one shape to
another.

Shape contexts have empirically demonstrated to be robust
to deformations and noise. The shape context descriptor has
been tested on different datasets as handwritten digits or sil-
houette shapes. It has also proven its good performance in
recognizing logos. In the original paper [3], the authors use
the shape context descriptor to retrieve logo images from
a database, and in [25] Zhu and Doermann also used this
descriptor for this purpose. However, the fact of having a
local description of keypoints which entails a point corre-
spondence matching hinders its applicability to the retrieval
problem in large collections.

a) b)

c) d)

Figure 2: Example of the shape context descriptor
for shape matching. (a) and (b) Original shapes
to match with sampled edge points; (c) diagram of
the log-polar histogram bins used in computing the
shape contexts; (d) correspondences found using bi-
partite matching for the two shapes (a) and (b).

In order to avoid such problem, we use a variant of the
shape context descriptor aiming to describe the logos glob-
ally, known as the shapeme histogram descriptor. Let us
further detail in the next section its use.

3.2 From Local to Global Description: The
Shapeme Histogram Descriptor

Realizing that the fact of applying the deformable matching
algorithm is computationally prohibitive when dealing with
large databases, Mori et al. presented in [15] the shapeme
histogram descriptor. This description technique was in-
spired by the shape context descriptor described above, and
the bag-of-words model. The main idea is to compute the
shape context descriptor for all the interest points extracted



a) b)

Figure 3: Logo representation by shapemes. Note that the similar parts of the two logos are labelled with
the same shapemes (10, 2, 15 and 11). Note as well that the rounded parts of the text are also labelled with
the same shapeme (14) in both logos.

from a symbol and then use vector quantization in the space
of shape contexts. Vector quantization involves a clustering
stage of the shape context feature space. Once the clustering
is computed, each shape context descriptor can be identified
by the index of the cluster which it belongs to. These clus-
ters are called shapemes. Each logo is then described by a
single histogram representing the frequencies of appearance
of each shapeme.

In the learning stage, given a set of model logos, we can com-
pute their shape context descriptors and cluster this space
by means of the k-means algorithm identifying a set of k
cluster centers and assigning to them a given integer index
I ∈ [1, k]. Then, in the recognition stage, given a logo ℓ, and
its n sampled points from its edge map, we compute their
shape context descriptors hi,∀i ∈ [0, n]. Each shape context
descriptor of the points pi is then projected to the clustered
space and can be identified by a single index Ii. The logo
ℓ can thus be represented by a histogram coding the fre-
quency of appearance of each of the k shapeme indices. By
this means, we globally describe by a unique histogram SH
each logo by applying the following equation:

SH(x) = #{Ii == x : Ii ∈ [0, k]} (2)

We can see an example of the shapeme histogram descriptor
in Fig. 3. Here, the shape context space has been clustered
by the k-means algorithm with k = 15. We can see at each of
the points pi its corresponding index Ii, and how the similar
parts shared by both logos are identified by the same indices.

By using the shapeme histogram descriptor, the matching
of two logos is reduced to find the k-NN in the space of
shapeme histograms, avoiding much more complex match-
ing strategies. However, in order to efficiently retrieve those
histograms when dealing with large image datasets, we pro-
pose to use an indexing structure which aims to perform an
approximate k-NN search in sub-linear time. Let us detail
in the next section the use of this structure.

4. APPROXIMATE K-NN SEARCH BY LSH
In order to avoid a one-to-one logo matching, we propose
to use an algorithm for approximate k-NN search that effi-
ciently results in a set of candidates that probably lie nearby
the queried point. The method we use is the locality-sensitive
hashing (LSH), first introduced by Indyk and Motwani in

[11], and then revised by Gionis et al. in [9]. The LSH algo-
rithm has been proven to perform approximate k-NN search
in sub-linear time and has been used in several applications.
As example, Frome and Malik used the LSH algorithm in [8]
to index shape context descriptors of three-dimensional ob-
jects. Within the DIAR field, Kumar et al. used in [12]
the LSH algorithm for a word spotting problem, and in [16],
Rasagna et al. use the LSH technique for an efficient clus-
tering of word images.

The basic idea of the LSH method is to index points from a
database by using several näıve hash functions, in order to
ensure that objects that are close in the feature space have
a high probability of provoking collisions in the hash tables.

Let us consider a shapeme histogram description of a logo
SH = (x1, ..., xk), this point in the k-dimensional space is
transformed in a binary vector by using the following equa-
tion:

v(SH) = (UnaryC(x1), ..., UnaryC(xk)) (3)

Being C the largest coordinate of the shapeme histograms
space, and UnaryC(xi) representing the unary representa-
tion of xi, i.e. a sequence of xi ones followed by C−xi zeros.
The distance between two shapeme histograms can then be
computed by the Hamming distance among their binary rep-
resentations v(SH). We define the hash function family H
describing all possible hash functions g(x) that project bi-
nary points to one of their d coordinates as follows:

H = {g : {0, 1}d → {0, 1}|g(x) = xi, i = 1..d} (4)

where xi is the value of the ith coordinate of x. A hash
function G is then defined by randomly selecting m hash
functions g(x) from H and concatenating them.

The LSH algorithm then constructs L hash tables T , each
corresponding to a different randomly chosen hash function
G. Given a query point, the algorithm iterates over all the
L hash tables T retrieving the data points that are hashed
into the same bucket as the query.

Let us follow a simple example. Consider three different
descriptors:

SH1 = {5, 3, 2}
SH2 = {4, 1, 6}
SH3 = {2, 5, 4}



Figure 4: Example of the LSH algorithm. Each hash
table T defines a set of buckets by applying the hash
function G. The resulting approximate NN are given
by the union of the activated buckets.

in a three-dimensional space where C = 6. Their binary
representation by applying the unary function is:

v(SH1) = 111110 111000 110000
v(SH2) = 111100 100000 111111
v(SH3) = 110000 111110 111100

We then randomly define three different hash functions:

G1 = {g2, g9, g15}
G2 = {g1, g3, g11, g17}
G3 = {g5, g14, g16, g18}

that define the coordinates of the data to take into account.
Applying G1 to a binary vector results in the bucket index
identified by the binary number formed by the second, the
ninth and the fifteenth value of the original vector. If we ap-
ply these hash functions to our data we obtain the following
buckets:

G1(SH1) = 110, G2(SH1) = 1100, G3(SH1) = 1100
G1(SH2) = 101, G2(SH2) = 1101, G3(SH2) = 0111
G1(SH3) = 111, G2(SH3) = 1010, G3(SH3) = 0110

Then, given a query SHq = {3, 2, 6} we have:

v(SHq) = 111000 110000 111111
G1(SHq) = 101, G2(SHq) = 1101, G3(SHq) = 0111

We obtain SH2 = {4, 1, 6} as the nearest descriptor to the
query since it provokes a collision in each of the T tables.
If we make the analogy to a two-dimensional space, we can
see an illustrative example of the LSH algorithm in Fig. 4.
Given our data space and a query, each hash table T defines
a set of buckets by applying a näıve hash function G. The

resulting approximate nearest-neighbors are defined by the
union of all the data points in each of the buckets identified
by the query (green points in the figure). In our experiments
setup, we set the width parameter m to 10 bits and we used
L = 50 tables.

5. EXPERIMENTAL RESULTS
Let us first introduce the logo dataset we used in our exper-
iments and the performance evaluation measures. We will
then present the experimental results.

5.1 Dataset and Performance Evaluation
To conduct the experimental results, we will focus on the
large collection of real-world complex document images To-
bacco-800 [26, 14], which is public available and has a set
of ground-truthed logos with their localization within the
complete documents. This dataset has labelled 432 logos
belonging to 35 different classes. In this case, we consider
two logos as similar if they belong to the same class. In
order to validate the proposed method, we use a repeated
random sub-sampling validation scheme. A 10% of logos are
randomly taken as training set to run the k-means clustering
and the other 90% are taken as test. The random splitting
is repeated ten times and the results are finally averaged
for the sake of stability. Note that, usually, in most of the
recognition techniques where a learning stage is needed, the
training set is much larger than the test set. One of the
advantages of the proposed method is that it can perform
well with a reduced amount of training data.

To evaluate the performance of the retrieval system, we
will use different measures. First, we will evaluate the re-
trieval performance by using the ROC curves [7] which plot
the false positive rate (FPR) against the true positive rate
(TPR). These ratios are derived from the contingency table
and defined in terms of the amount of true positives (TP ),
false positives (FP ), true negatives (TN) and false negatives
(FN):

TPR =
TP

(TP + FN)
; FPR =

FP

(FP + TN)
(5)

The TPR ratio measures the effectiveness of the system in
retrieving the relevant items. Whereas the FPR ratio mea-
sures the probability that a non-relevant document is re-
trieved by the query. In order to quantitative evaluate the
different ROC curves we use the area under curve (AUC)
measure. In addition, usually, the user of a retrieval sys-
tem is mainly interested in retrieving relevant items in the
first positions of the results. In order to evaluate the good-
ness of the retrieval, we also use the mean average precision
(mAveP ) measure. The mean average precision is a mea-
sure of quality which rewards the earliest return of relevant
items [22]. Retrieving all relevant items in the collection and
ranking them perfectly will lead to a mean average precision
of 100%. We also use the Bull’s eye measure (BE) to eval-
uate the early retrieval of relevant items. If in the database
we have p positive examples for a given query, the Bull’s eye
measure is computed as the amount of correctly retrieved
items in the first 2× p results [13].



Table 1: Qualitative retrieval results. Query logo and first ten retrieved logos by similarity.

query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

All these measures are averaged for all the random splits,
and we give the mean x and the standard deviation σ for
each of them. In order to compare performance of the
LSH indexing technique, we will compare the retrieval re-
sults with the results of an exhaustive search with a k-NN
algorithm by computing the logo similarity between two
shapeme histogram descriptors with the χ2 distance defined
as:

χ2(i, j) =
1

2

k∑
m=1

[SHi(m)− SHj(m)]2

SHi(m) + SHj(m)
(6)

5.2 Results
Let us first take a look at the qualitative results. We can
see in Table 1 some retrieval examples. This experiment
was performed with k = 200 in one of the random splits.
We can appreciate that the retrieval results are quite good
since in most cases just correct logos are retrieved in the
first 10 ranks. When querying a symbol with few positive
samples in the database, the system returns several false
alarms which in most cases are visually similar to the query.

Tables 2 and 3 show respectively the average time2 in re-

2The times given in Table 2 correspond to a prototype pro-

Table 2: Average time in retrieving all the logos for
different values of k.

k

25 50 100 200 300

Time (ms.) 20.33 21.25 25.24 26.98 28.04

trieving all the logos and the evaluation measures for differ-
ent values of k. Here we can appreciate a common tradeoff
between the time taken to execute a query and the final
performance of the system. The more dimensions we add to
the shapeme histogram, the more it performs well, however,
the more time it takes to answer a query. Fig 5 plots the
ROC curves for these different values of k showing the per-
formance gain as long as we increase the dimensions of the
shapeme histogram descriptor.

In Table 3 we compare as well the performance of the pre-
sented method with an exhaustive search with a k-NN al-

grammed in Matlab without any code optimization, and are
given just to compare the effect of the parameter k.



Table 3: Quantitative evaluation measures. Comparison between LSH and k-NN search.

k AUC (%) mAveP (%) BE (%)

LSH NN LSH NN LSH NN

x σ x σ x σ x σ x σ x σ

25 93.78 0.33 93.87 0.34 71.84 23.79 72.16 23.56 76.64 17.74 83.26 1.62
50 94.21 0.19 94.36 0.15 74.85 23.61 75.46 23.3 76.64 19.57 81.82 12.66
100 94.78 0.26 94.74 0.31 77.59 23.16 77.88 22.74 75.33 23.89 82.12 17.16
200 95.38 0.26 95.05 0.31 80.37 22.43 79.95 22.33 78.91 21.14 85.34 10.99
300 95.77 0.18 95.12 0.19 82.6 22.08 81.71 22.33 85.48 19.74 91.14 3.16

gorithm. We can appreciate that even if LSH perform an
approximate k-NN search the performance loss is not signi-
ficative, and, in some of the cases in the highest dimensional
spaces even perform better.

Figure 5: ROC curve for different values of k.

Finally, Fig. 6 we show the results of the last experiment
aiming to see the scalability of the proposed method. In this
case, besides the logos from the Tobacco-800 database we
build a database of 100000 heterogenous objects. We have
added architectural and electrical symbols from the GREC
databse, logos from the UMD database, silhouettes from
the MPEG-7 database, objects from the ALOI database
and random generated shapeme histograms. In this exper-
iment we are not interested in the retrieval results but in
seeing how scalable the system is regarding the growth of
the database. We can appreciate the immense difference
between using LSH for accessing large data collections and
using a brute-force k-NN search. Although even in the case
of using LSH, the consumed time depends as well on how
much we increase the collection, the obtained times are still
affordable.

6. CONCLUSIONS
In this paper we have presented a method for logo retrieval in
large digital libraries. We have proposed an efficient queried-
by-example retrieval system which is able to retrieve logos
by similarity from large databases of isolated logos. Logos
have been compactly described by the shapeme histogram
descriptor. These descriptors are then organized by the LSH

Figure 6: Average time to retrieve the 50-NN for
different database sizes.

indexing structure aiming to perform approximate k-NN
search in high dimensional spaces in sub-linear time. The
experiments demonstrate the effectiveness and efficiency of
this system on realistic datasets. We have pointed in this
paper the importance of proposing scalable methods in the
document image analysis community by means of indexing
structures when it comes to the problem of retrieval in dig-
ital libraries. The use of LSH aims to achieve retrieval by
content similarity in sub-linear time with a negligible accu-
racy loss regarding the exhaustive search. In addition, the
proposed method is able to perform well with a low amount
of training samples which is also an important point when
dealing with heterogenous image collections as logos.

One of the points to take into account is that the shapeme
histogram descriptor does not involve any spatial informa-
tion among the interest points. It would be an interesting
idea to try to add relational information to the proposed
description technique in order to make the method much
more robust. Regarding the future work, we believe that
the retrieval of logos present in complete documents is still
a promising research field. In this paper we just focused
in isolated logos, but it would be very interesting to extend
the presented techniques to tackle with complete documents
for focused retrieval of logos in documents. Logo spotting
will be useful for a great number of applications such as
document classification, indexation and browsing. The use
of local description techniques such as shape contexts and
efficient indexing structures as LSH should be further inves-
tigated in relation with logo spotting and focused retrieval.
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