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Abstract

The topic of text document image classification has been
explored extensively over the past few years. Most recent
approaches handled this task by jointly learning the visual
features of document images and their corresponding tex-
tual contents. Due to the various structures of document im-
ages, the extraction of semantic information from its textual
content is beneficial for document image processing tasks
such as document retrieval, information extraction, and text
classification. In this work, a two-stream neural architec-
ture is proposed to perform the document image classifica-
tion task. We conduct an exhaustive investigation of nowa-
days widely used neural networks as well as word embed-
ding procedures used as backbones, in order to extract both
visual and textual features from document images. More-
over, a joint feature learning approach that combines im-
age features and text embeddings is introduced as a late
fusion methodology. Both the theoretical analysis and the
experimental results demonstrate the superiority of our pro-
posed joint feature learning method comparatively to the
single modalities. This joint learning approach outperforms
the state-of-the-art results with a classification accuracy of
97.05% on the large-scale RVL-CDIP dataset.

1. Introduction
For many public and private organizations, understand-

ing and analyzing data from documents manually is time
consuming and expensive. Unlike the general images, doc-
ument images may be presented in a variety of forms due to
the different manners of organizing each document. How-
ever, extracting an accurate and structured information from
the wide variety of documents is very challenging consid-
ering their visual structural properties and their textual het-
erogeneous content. From a computer vision perspective,
earlier studies that have been using deep neural networks
for document analysis tasks focused on their structural sim-
ilarity constraints and their visual features [5, 29, 20, 21].
As most recent deep learning methods do not require ex-

tracting features manually, the state-of-the-art approaches
based on visual information of document images treat the
problem as a conventional image classification. Addition-
ally, from a natural language processing perspective, Yang
et al. [37] presented a neural network to extract semantic in-
formation based on word embeddings from pretrained natu-
ral language models. Nevertheless, classifying documents
with only visual information may encounter the problem
of low inter-class discrimination, and high intra-class struc-
tural variations of highly overlapped document images [1]
shown in Fig. 1. As such, jointly learning visual cues and
text semantic relationships is an inevitable step to mitigate
the issue of highly correlated classes. Recent methods have
used multimodal techniques to leverage both image and text
modalities extracted by an OCR engine to perform fine-
grained document image classification [4, 9, 36, 3].

Therfore, we study the capability of static and dynamic
word embeddings to extract meaningful information from a
text corpus. While static word embeddings fail to capture
polysemy by generating the same embedding for the same
word in different contexts, dynamic word embeddings are
able to capture word semantics in different contexts to ad-
dress the issue of polysemous and the context-dependent
nature of words. We explored and evaluated both static and
dynamic word embeddings on the large RVL-CDIP 1 [15]
dataset. Furthermore, we propose a cross-modal network
to learn simultaneously from the visual structural properties
and the text information from document images based on
two different models. The learned cross-modal features are
combined as the final representation of our proposed net-
work to boost the classification capacity of document im-
ages. To perform text classification, an optical character
recognition (OCR) is employed to extract the textual con-
tent of each document image. The latent semantic analy-
sis is following the OCR. We utilize the pretrained Glove
and FastText [27, 26] as static word embeddings, followed
by a gated recurrent unit (GRU) mechanism introduced by
J.Chung et al. and K.Cho et al. [6]. GRU is a simplified
variant of LSTM architectures introduced by S. Hochreiter

1https://www.cs.cmu.edu/˜aharley/rvl-cdip/
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Figure 1. Samples of different document classes in the RVL-CDIP dataset which illustrate the low inter-class discrimination and high intra-
class variations of document images. From left to right: Advertisement, Budget, Email, File folder, Form, Handwritten, Invoice, Letter,
Memo, News article, Presentation, Questionnaire, Resume, Scientific publication, Scientific report, Specification

and J. Schmidhuber [13] to overcome the vanishing gradient
problems. Moreover, based on both left and right context,
the deep bidirectional pretrained BERT model [11] is uti-
lized as a contextualized dynamic word embedding to learn
the text semantic features.

To conduct image classification task, we investigate the
impact of both heavyweight (i.e. with a large amount of
paramaters) and lightweight (i.e. with a much lower amount
of paramaters) deep neural network architectures on learn-
ing deep structural properties from document images. The
heavyweight models with large size parameters such as
NasNetLarge [39], Inception-ResNet-v2 [32] can achieve
state-of-the-art classification accuracy on the widely used
ImageNet [10] dataset in the cost of the computational com-
plexity and time consuming. Instead, the lightweight mod-
els with less parameters designed for the constrained en-
vironment, e.g. real-time environment, mobile application
with less hardware resources, focus on the trade-off be-
tween the efficiency and the model accuracy. Amongst
all classes of the RVL-CDIP dataset, some samples from
specific categories present particular layout properties and
document structures. Most classes are mainly composed
of text information, while the classes like Advertisement,
File folder contain only images with very few text infor-
mation. Specifically, some samples do not contain any text
data. Another class such as Handwritten, which is com-
posed of handwritten text characters, produces noisy output
text resulted by the processing of OCR engine. The idea be-
hind this work relies on whether combining learned visual
features with textual features could effectively benefit for
the document image classification task, to achieve accurate
results for the categories (Advertisement, File folder, Hand-
written). In order to get the fusion embeddings, we adopt a
late fusion scheme methodology. Our main contributions of
this paper are as follows:

• We propose a cross-modal deep network that leverages
textual contents and visual features to classify docu-

ment images. We show that the joint learning method-
ology boosts the overall accuracy comparatively to the
single-modal networks.

• We evaluate the performance of static and contextual-
ized dynamic word embeddings to classify textual con-
tent of document images.

• We review the impact of training heavyweight and
lightweight deep neural networks on learning relevant
structural information from document images.

2. Related work
In the recent past, several studies have been made to

automatically classify document images. Earlier attempts
have focused on region-based analysis by detecting and ana-
lyzing certain parts of a document. Hao et al. [14] proposed
a novel method for table detection in PDF documents based
on conventional neutral networks. An alternative strategy
for region-based approaches is to learn visual shared spa-
tial configuration of a given document image [15]. In [8],
a combination of holistic and region based modelling for
document image classification was conducted with intra-
domain transfer learning. However, many researchers uti-
lized deep learning methods among hand-crafted feature
techniques and representations, as they have shown their
notable performance for the text document image classifica-
tion task. In [35], transfer learning was used to improve the
classification accuracy on the standard RVL-CDIP dataset,
using AlexNet [19] architecture pre-trained on ImageNet
dataset. A large empirical study was conducted to find
what aspects of CNNs most affect the performance on doc-
ument images. Results showed that CNNs trained on RVL-
CDIP dataset learn region-specific layout features. Also,
[2] investigated most used deep learning architectures such
as AlexNet, VGG-16 [31], GoogLeNet [34] and ResNet-
50 [17], using transfer learning on the RVL-CDIP and To-
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Figure 2. The proposed cross-modal deep network

bacco3482 datasets. In comparison, [22] concentrated on
speed by replacing the fully connected portion of the VGG-
16 architecture with extreme learning machines (ELM).

Nonetheless, document images can be characterized
based on their text contents and/or their visual structural
properties. Intuitively, the textual contents are mainly ex-
tracted using optical character recognition (OCR) tech-
niques. Following [30] work, structure-based features were
used to classify text content of document images. Moreover,
[24] experimented with one-class SVM for document clas-
sification based on various text features like TF-IDF. The
Recent appearance of learned word embedding approaches
such as Word2Vec [25], Glove, ELMO [28], FastText, XL-
Net [38], have led to significant improvements from a natu-
ral language processing perspective. The different types of
static and dynamic word embeddings aim to learn lexicon
related to the words or vocabulary of a language, syntac-
tic to create well-formed sentences in a language, semantic
related to meaning in language, and pragmatic approach re-
lated to proximity between words and documents. Topic
modelling used as a generative approach was performed us-
ing latent Dirichlet Allocation technique [18].

In addition, latest works focused on combining textual
and visual features in a multimodal network to perform
document image classification. [37] presented an end-to-
end multimodal approach to extract semantic structure from
documents using fully convolutional neural networks. In
[23], a hybrid approach was proposed to capture contextual
information using a RNN followed by a CNN to extract fea-
tures. FastText word embedding, and MobileNetv2 [4] im-
age embedding was introduced to jointly perform visual and
textual feature extraction. As well, a novel approach is pre-
sented in [3], which leverages text-image features by intro-
ducing an InceptionV3 [33] network with a filter text-based

feature-ranking algorithm. A modular multimodal architec-
ture is presented in [9] for document classification followed
with a XGBoost meta-classifier. Finally, [36] has proposed
a novel architecture to merge textual and layout information
from scanned document images in a single framework.

In this paper, we propose a cross-modal network to per-
form image and text feature extraction relying on off-the-
shelf image-based deep networks and word embedding al-
gorithms. We attempt to bridge the two modalities in an
end-to-end network to simultaneously learn from image and
text features. The built-in network is based on the per-
formance of lightweight, heavyweight architectures used in
our experiments for image stream, and static, dynamic word
embeddings used to perform text classification.

3. Network architecture
This section briefly presents the deep conventional neu-

ral networks and word embedding procedures used in this
work. On the one hand, we intend to investigate the impact
of training lightweight and heavyweight deep networks on
the classification accuracy on the RVL-CDIP dataset. On
the other hand, we attempt to compare the performance
of static and dynamic word embedding procedures used
to generate features to process the text classification task.
Fig. 2 illustrates the proposed cross-modal network.

3.1. Image stream

For the document visual embeddings, we propose to
explore two well-known networks (NasNet and Inception-
ResNet-v2) as backbones to extract the image features.

NasNet-A(6@4032): The NasNet architecture [39] is
composed of two types of layers: Normal layer, and Reduc-
tion layer. The Normal layer is a convolutional layer that
returns a feature map of the same dimension, where the Re-



duction layer is a convolutional layer that returns a feature
map, where the feature map height and width is reduced by
a factor of two. For NasNet-A(6@4032), 6 means N=6, i.e.
number of layers repeated, 4032 means the number of fil-
ters in the penultimate layer of the network. It has 88.02 M
parameters. We denote the model as NasNetLarge.

NasNet-A(4@1056): A second architecture based on the
same network was studied with N=4 layers repeated and
1056 filters in the penultimate layer of the network. This
light network only has 4.23 M parameters. We denote it as
NasNetMobile.

Inception-ResNet-v2: Inception-ResNet-v2 [32] is a
convolutional neural network that achieved state-of-the-art
results on the ILSVRC image classification benchmark.
Inception-ResNet-v2 is a variation of the earlier Incep-
tion V3 model by introducing the bypass connection as in
ResNet[16]. The model has 54.36 M parameters.

3.2. Text steam

For the textual part of documents, we use three recent
word-embedding mixing static and dynamic approaches for
the text classification.

Glove: GloVe [27] is an unsupervised learning algorithm
that generates word embeddings by aggregating global
word-word co-occurrence matrix from a corpus. The re-
sulting embeddings show interesting linear substructures of
the words in vector space. We used a pretrained GloVe on
Wikipedia 2014 and Gigaword 5 (6B tokens, 400K vocab,
uncased, 50d vectors).

FastText: FastText [26] is a library for efficient learning
of word representations and sentence classification. Fast-
Text breaks words into several character n-grams, which
allows computing word representations for words that did
not appear in the training data, known as out-of-vocabulary
words. FastText algorithm we used was pretrained on 2 mil-
lion word vectors trained on Common Crawl (600B tokens),
and uses 1,999,996 word vectors.

Bert: Bert [11] is a contextualized bidirectional word
embedding based on the transformer architecture. Bert rep-
resentations are jointly conditioned on both left and right
context in all layers, using a faster highly-efficient attention-
based approach. The BertBase model we will be using
in this work has 12 attention layers, 768 hidden layers,
12 heads, 109.19 M parameters, and uses a vocabulary of
30,522 words.

The next section illustrates in detail the components of
each stream of our proposed cross-modal approach.

4. Cross-modal feature learning

In this section, we illustrate the proposed cross-modal
stream for document image classification. In the first
stream, we feed input document images to the backbone

model. In the second stream, we extract the textual informa-
tion from document images with an OCR engine, then we
feed the text strings generated as input to the word embed-
ding algorithm. Finally, we consider a late fusion process to
merge the two modalities to enhance the performance com-
paratively to single-modals.

4.1. Image features

Deep neural networks have exhibited their exceptional
performance in both general image recognition and docu-
ment image classification tasks. The concept of transfer
learning from the object recognition domain was used to
improve the recognition accuracy on smaller datasets. To
investigate this approach more efficiently, we train the three
deep CNNs discussed above pre-trained on the ImageNet
weights. The image stream extracts visual features that are
passed to a global average pooling layer to reduce the spa-
tial dimensions of a three-dimensional tensor. It performs
also a more extreme type of dimensionality reduction. For
the final layers of the three deep CNNs, the global average
pooling layer is passed to the last fully connected layer to
perform classification with a softmax layer. The categorical
cross-entropy loss function of softmax is given by:

Ls1(X1; Θ1) =

K∑
k=1

−yklogP (ŷk|X1, θk)

= −
K∑
k=1

yklog
ef

θk (X1)∑K
1 ef

θ
k′ (X1)

(1)

Where {X1,Θ1} ∈ Rd1 , and d1 is the dimension ofX1 fea-
tures of the image stream. K is the number of classes in the
dataset where K=16, yk is the one-shot label of the feature
X1, P (ŷk|X1, θk) is the estimated probability of yk calcu-
lated by the softmax function over the activation function
fθk(X1), where {θk}Kk=1 = Θ1, θk ∈ Rd1 . The bottleneck
layer of the image branch is extracted as the feature X1 of
the input image.

4.2. Text features

As textual content is required to perform text classifica-
tion, we process all document images with an off-the shelf
optical character recognition (OCR) engine, i.e. Tesser-
act OCR2. It is based on LSTM layers and includes a
neural network subsystem configured in English as a text
line recognizer. Besides, the output text extracted is noisy
and not clean due to the different ways of presenting doc-
uments from plain, handwritten, and curved text, exotic
fonts, multi-column layouts, the wide variety of tables,
forms, and figures. Many word embeddings process a good
tokenization of the words by getting the embedding (i.e.

2https://github.com/tesseract-ocr/tesseract
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a vector of real numbers) for each word in the sequence,
where each word is mapped to a emb dim dimensional vec-
tor that the model will learn during training. In average,
for GloVe word embedding, we found 3,581,896 unique to-
kens and a total number of 400,000 word vectors on RVL-
CDIP corpus. As well, we found 3,601,377 unique tokens,
24,109 of null word embeddings, and a dictionary size of
3,601,377 for FastText word embedding on the same stan-
dard dataset. Contrary to traditional shallow representa-
tions (i.e. word2vec, GloVe, FastText), as they fail to cap-
ture higher-level information, many different dynamic word
embedding procedures (i.e. ELMO, BERT, XLNet) have
been proposed to capture semantic meaning to deal with the
context-dependent nature of words. For BertBase model,
we processed the tokenization by splitting the input text into
a 128 sequence list of tokens. To deal with out of vocabu-
lary (OOV), BertBase uses a WordPiece tokenization tech-
nique in which every OOV word is splitted into subwords.
the input embeddings are computed then by summing the
corresponding word embeddings, and segment embeddings.
Then, the input embeddings are passed to the attention-
based bidirectional transformer. After pre-processing the
textual content extractred by the OCR engine form docu-
ment images, we pass the input embeddings of both Glove
and FastText to a GRU network of 32 nodes and 3 hidden
layers. The final layers of the three models are passed to a
softmax layer with categorical cross-entropy loss function.

4.3. Cross-modal features

In this part, we intend to study the effectiveness of the
cross-modal features that are jointly learned from the im-
age stream and text stream for the classification of docu-
ment images. We adopt the late fusion process with two
different methodologies, i.e. equal concatenation and aver-
age ensemble fusion. We assume that the dimension of the
features extracted from the image stream or the text stream
is denoted as d.

(a) Equal concatenation: We add a fully connected
layer to the image stream, having the same dimensional out-
put vector as the text stream. The final cross-modal feature
is the concatenation of the two equal embedding features
given by:

Xa = [X1|X2], Xa ∈ R2d1 (2)

Where X1 ∈ Rd1 is the obtained image embedding feature,
and X2 ∈ Rd2 is the text embedding feature, d1 = d2 and |
is the concatenation operation.

(b) Average ensembling fusion: We employ a pixel-
wise addition between the image and text embedding fea-
tures, i.e. superposing directly the two embeddings to gen-
erate the cross-modal features. Note that the obtained cross-
modal features have the same dimension as the image or text

embedding features.

XAv = [X1 +X2], XAv ∈ Rd1 (3)

Training protocol: The learning of the cross-modal fea-
tures include two main parts: the learning of the param-
eters of the image stream Θ1 and the parameters of the
text stream Θ2. Then, the parameters of the network Θ =
{Θ1,Θ2} are optimized by the global cross-entropy loss
function L(Θ) given by:

L(Θ) =

K∑
k=1

−yklogP (ŷk|X,Θ) (4)

where X is the cross-modal features Xa or XAv.

5. Experiments and analysis
5.1. Dataset

In order to evaluate the performance of the cross-modal
learning approach, we introduce the publicly available
RVL-CDIP dataset used in our experimentation. The Ry-
erson Vision Lab Complex Document Information Process-
ing (RVL-CDIP) dataset consists of 400,00 grayscale la-
beled document images in 16 classes (advertisement, bud-
get, email, file folder, form, handwritten, invoice, letter,
memo, news article, presentation, questionnaire, resume,
scientific publication, scientific report, specification), with
25,000 images per class. There are 320,000 training im-
ages, 40,000 validation images, and 40,000 test images.

5.2. Preprocessing of the experiments

As the DCNNs used in this paper require input images
of fixed size, we first downscale all document images pre-
sented in both datasets to the expected input size of the
networks. The original document images size is about
1000x750 pixels. For NasNetLarge, the images are resized
to 331x331 pixels. For Inception-ResNet-v2, the images
are resized to 299x299 pixels, and resized to 224x224 for
NasNetMobile. As a data augmentation typical step, we in-
tended to minimize the high intra-class similarity variations
in document images. To do so, we applied shear transform
with a range of 0.1 as in [35]. This technique is a common
practice to stochastically transform each input during SGD
training, to artificially enlarge the training data in order to
improve the performance. Also, we randomly shifted im-
ages horizontally and vertically with a range of 0.1. For
effective training, we introduced cutout data augmentation
[12] that has shown its efficiency towards improving reg-
ularization of DCNNs. It consists of randomly masking a
square region in an image at every training step, thus re-
moving the redundancy of the images and augmenting the
dataset by partially occluded versions of existing samples.



Table 1. The classification accuracy of the text streams for each class in RVL-CDIP dataset
Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
GloVe 0.53 0.68 0.85 0.90 0.62 0.53 0.81 0.57 0.62 0.78 0.56 0.72 0.94 0.77 0.62 0.85
FastText 0.57 0.72 0.89 0.94 0.68 0.64 0.88 0.69 0.70 0.78 0.62 0.81 0.95 0.85 0.73 0.88
BertBase 0.68 0.83 0.95 0.85 0.80 0.69 0.88 0.84 0.90 0.84 0.82 0.87 0.97 0.89 0.80 0.92

Table 2. The classification accuracy of the image streams for each class in RVL-CDIP dataset
Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
Inception-ResNet-v2 0.89 0.78 0.97 0.96 0.72 0.93 0.88 0.82 0.93 0.83 0.72 0.75 0.96 0.87 0.86 0.85
NasNetMobile 0.91 0.79 0.97 0.95 0.75 0.95 0.70 0.79 0.83 0.90 0.81 0.68 0.94 0.80 0.63 0.85
NasNetLarge (4032d) 0.92 0.90 0.98 0.94 0.84 0.94 0.91 0.89 0.94 0.91 0.85 0.89 0.96 0.93 0.82 0.93
NasNetLarge (768d) 0.94 0.90 0.98 0.96 0.83 0.95 0.93 0.90 0.93 0.92 0.85 0.89 0.96 0.93 0.82 0.93

As a final preprocessing step for image streams, we convert
the grayscaled document images to RGB images.

Intuitively, the text corpus fed to the input layer of the
text branch was extracted with an off-the-shelf optical char-
acter recognition OCR, i.e. Tesseract OCR. We utilized this
OCR engine to conduct a fully automatic page segmenta-
tion, as the document images from the datasets are well-
oriented and relatively clean. Since the text extracted from
document images contains a lot of noise such as stop words,
mis-spellings, symbols and characters, cleaning text docu-
ments is a crucial step to remove unnecessary features.

5.3. Implementation details

In this subsection, we describe the implementation de-
tails used to train the proposed single-modal and cross-
modal approaches. We have trained all networks on a
NVIDIA Quadro GP100 GPU, using stochastic gradient de-
scent optimizer (SGD), with a momentum of 0.9, a learning
rate of 0.001, and a step decay schedule defined as :

lr = initial lr ∗ drop( iter
iter drop ) (5)

where drop and iter drop took a value of 0.5.

The visual streams were trained with a batch size of 16
for 50 epochs. Early stopping was considered within 5
epochs to stop training once the model’s performance stops
improving on the hold out validation dataset. Further, L2
regularization was applied to add a penalty for weight size
to the loss function. Dropout was applied too to the final
softmax layer with a probability of 0.5. For the text stream,
it was trained with a batch size of 40, and a sequence length
of 128 for 50 epochs. The cross-modal feature learning ap-
proach was fine-tuned using document pretraining weights
obtained by the single modalities. We freezed all layers
and trained our cross-modal network with both the equal
concatenation and the average ensembling fusion methods,
followed by the softmax layer to perform document image
classification.

5.4. Overall evaluation

On the large-scale RVL-CDIP dataset, all of the adopted
networks in this work achieve comparable performance
with the state-of-the-art results. We report the overall ac-
curacy results in Table. 4. The heavyweight NasNetLarge
(768d) model performs the best for our single image modal-
ities at an accuracy of 91.45%, outperforming the other
tested models NasNetLarge (4032d), Inception-ResNet-v2,
and NasNetMobile at an accuracy of 91.12%, 85.04%, and
81.54% respectively. For the text modalities, the BertBase
model achieves comparable performance with the state-of-
the-art results on the same standard dataset, with an ac-
curacy of 84.96%. BertBase manages to improve the per-
formance thanks to its attention-based mechanism, while
Glove and FastText still achieve good results on the text
classification task at an accuracy of 71.54%, and 77.31%
respectively. As each single modality is trained indepen-
dently from one another, merging both streams boost the
performance significantly for the two fusion modalities to
96.94%, 97.05% classification accuracy for equal concate-
nation and average ensembling respectively. Thus, exceed-
ing the current state-of-the-art results by a 2.63% margin.

5.5. Ablation study

To evaluate the effectiveness of our proposed cross-
modal approach for document image classification, we
firstly investigate the performance of the single modalities
based on the textual content and the corresponding visual
features. As seen in Table. 1, the classification results of
each class of the three word embedding procedures are very
low concerning three main categories that are: Advertise-
ment, File Folder, and Handwritten. For Glove, the classi-
fication results of the three classes are 53%, 90%, and 53%
respectively. Whereas for FastText, it improved slightly the
accuracy results for each class to 57%, 94%, and 64% re-
spectively. More specifically, the GloVe method predicted
36.32%, 32.66% of Advertisement and Handwritten class
documents as File Folder documents. Also, FastText man-
aged to improve the performance and reduced the classifi-
cation error by 4% where 31.13% of Advertisement, and



Table 3. The classification accuracy of the cross-modal stream for each class in RVL-CDIP dataset, with the proposed fusing modalities
Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
Equal Concatenation 0.97 0.96 0.98 0.98 0.93 0.97 0.97 0.95 0.97 0.96 0.94 0.97 0.99 0.97 0.94 0.98
Average Ensembling 0.97 0.97 0.98 0.98 0.94 0.97 0.97 0.95 0.97 0.96 0.94 0.97 0.99 0.97 0.95 0.98

Table 4. The overall accuracy of the proposed methods with different backbones and different fusion modalities on the RVL-CDIP dataset
Method Model Accuracy(%) Top-5 Acc Precision Recall F1-Score #Parameters

Baseline Methods

Harley et al. [15] 89.80 - - - - -
Multimodal (Nicolas et al.) [4] 90.06 - - - - -

Csurka et al. [7] 90.70 - - - - -
Tensmeyer et al. [35] 90.94 - - - - -

Azfal et al. [2] 90.97 - - - - -
Single model (Das et al.). [8] 91.11 - - - - -

Region-based model (Das et al.). [8] 92.21 - - - - -
Multimodal (Dauphinee et al.) [9] 93.03 - - - - -
Multimodal (Dauphinee et al.) [9] 93.07 - - - - -

LayoutLM (Xu et al.) [36] 94.42 - - - - 160 M

Text Stream
Glove-GRU 71.54 0.9386 0.75 0.72 0.72 179 M

FastText-GRU 77.31 0.9515 0.80 0.78 0.78 30.47 M
BertBase 84.96 0.9674 0.86 0.86 0.85 109.19 M

Image Stream

NasNetMobile 81.54 0.9729 0.84 0.83 0.83 4.23 M
Inception-ResNet-v2 85.04 0.9780 0.88 0.86 0.87 54.36 M
NasNetLarge (4032d) 91.12 0.9861 0.92 0.91 0.92 84.98 M
NasNetLarge (768d) 91.45 0.9860 0.92 0.92 0.92 88.02 M

cross-modal Stream
NasNetLarge+BertBase (Equal concat.) 96.94 0.9983 0.97 0.97 0.97 197.22 M

NasNetLarge+BertBase (Average Ensemb.) 97.05 0.9985 0.97 0.97 0.97 197.21 M

28.28% of Handwritten class documents are predicted as
File Folder documents.

Furthermore, the bidirectional BertBase enhanced the
performance to 68% for Advertisement, 85% for File folder,
and 69% for Handwritten categories. The BertBase net-
work boosted the performance of the three classes and cut
the error-classification by half where 15.98% of Advertise-
ment, and 15.84% of Handwritten categories are predicted
as File folder document images. The classification errors
are mainly due to either OCR error recognition, or empty
document images which result to empty text files. Adver-
tisement documents contain mostly images with few invisi-
ble text sequences, where the corresponding text generated
by OCR is too much noisy and non-recognized. File Folder
class presents in most cases empty document images with
no text in it to be processed by the OCR engine. Finally,
OCR technique fails to recognize handwritten characters in
document images as a result of the different handwriting
manners.

Still, all image networks trained on the RVL-CDIP
dataset achieve comparable performance with the state-of-
the-art methods. Table. 2 illustrates the performance of our
best single image modality NasNetLarge (768d). It shows an
improvement in the classification results of all classes, espe-
cially for the classes Advertisement, File Folder, and Hand-
written to 94.08%, 96.04%, 95.07% in comparison of text
stream results. Nevertheless, the lightweight NasNetMobile

network fails to improve the performance for most of
the classes comparatively to BertBase, our best text-based
model. Whereas, the Inception-ResNet-v2 network slightly
outperforms our text streams with 85.04% accuracy in com-
parison with BertBase model (84.96%), surpassing signifi-
cantly both Glove and FastText word embeddings.

Besides, the aim of this work is to leverage the abil-
ity of the cross-modal network to enhance the performance
comparing to the single-modals. To do so, we proposed
to merge textual and visual features with two different fu-
sion modalities. For the average ensembling fusion method,
it requires two feature vectors with the same size. Since
text output vector is of size 768, and image output vector
is of size 4032, we added a fully connected layer on top of
NasNetLarge (4032). We re-trained it to study its effect on
the classification results. Table. 4 shows that indeed, adding
a fully connected layer slightly increases the performance of
the image modality from 91.12% for NasNetLarge (4032), to
91.45% for NasNetLarge (768). This comparison illustrates
that image features are more important than text features
with both feature embeddings of size 4032 and 768.

Accordingly, Tables. 3, 4, show the accuracy of each
class and the overall accuracy of the cross-modal net-
work that merges the best single-modals NasNetLarge, and
BertBase. Jointly learning both modalities with the late fu-
sion scheme proposed in section. 4.3, achieves accurate re-
sults in comparison with the current state-of-the-art meth-



Table 5. The Recall and Precision metrics of image backbones of most relevant classes in RVL-CDIP
Model Metrics Advert. Email File folder Form Handwr. Invoice Presentation Quest. Resume Sci.Report

NasNetMobile
Recall 0.91 0.97 0.96 0.75 0.95 0.71 0.82 0.69 0.95 0.63

Precision 0.83 0.90 0.89 0.69 0.83 0.95 0.68 0.87 0.82 0.77

Inception-ResNet-v2
Recall 0.90 0.97 0.97 0.73 0.93 0.88 0.73 0.76 0.96 0.86

Precision 0.90 0.99 0.86 0.78 0.93 0.83 0.84 0.90 0.91 0.56

NasNetLarge (4032d)
Recall 0.94 0.99 0.96 0.84 0.95 0.93 0.86 0.90 0.97 0.83

Precision 0.92 0.98 0.95 0.86 0.95 0.93 0.84 0.87 0.98 0.83

NasNetLarge (768d)
Recall 0.93 0.99 0.95 0.84 0.92 0.92 0.85 0.89 0.97 0.82

Precision 0.93 0.98 0.96 0.84 0.95 0.94 0.82 0.88 0.97 0.83

ods. The joint learning approach shows its capability to
learn more relevant information from document images.
Thus, it improves the accuracy of each class independently
in comparison to single-modals. The cross-modal network
manages to correct the error of the text classification gen-
erated by text-based approaches for the three main classes:
Advertisement, File Folder, and Handwritten. Also, Fig. 3
shows the confusion matrix of our state-of-the-art cross-
modal network with the average ensembling late fusion
method. The network performs the best for the Resume
category with a 99.46%, 99.50% classification accuracy for
equal concatenation and average ensembling respectively.
Whereas it performs the worst for the class Form with a
93.38%, 94.13% accuracy for the two fusion modalities.

To this end, we see that either Glove, FastText, or Bert
are not able to outperform the image-based approaches for
this task. This proves that relying only on textual content
is not sufficient. Hence, it needs image features to achieve
accurate results. It is clear from all reported results that
combining the visual structural features with the extracted
text improves the quality and accuracy of predictions for the
document classification task.

5.6. Discussion

As illustrated in Table. 5, the lightweight NasNetMobile

framework fails to capture higher level features from Form,
Invoice, Questionnaire, and Scientific report classes. The
model seems to be less sensitive with a recall rate of 75%,
71%, 69%, and 63% for the four classes respectively. Also,
we measured the precision of the NasNetMobile network for
each class. It is less precise with a precision rate of 68%,
69% for the classes Presentation and Form. On the other
hand, the Inception-ResNet-v2 framework’s recall rate for
the classes Form, Presentation, and Questionnaire is low in
comparison with other categories. The recall for each class
is of 73%, 73%, and 76% respectively, while the precision
is of 78% for the class Form, with a deterioration to 56% for
the class Scientific report. Lastly, for our best heavyweight
model NasNetLarge, it shows an important ability to clas-
sify document images with a lower recall and precision of
83% for the Scientific report category. The higher recall is
of 99% for the class Email, while the higher precision is of

Figure 3. Confusion Matrix of our best cross-modal network with
the average ensembling fusion method

98% for both Email and Resume classes.

6. Conclusion

In this paper, we propose a hybrid cross-modal method-
ology that learns simultaneously from the input token em-
beddings extracted from text corpus, and image structural
information from document images to perform end-to-end
document image classification. We showed that, merging
the two modalities with different fusion schemes boost the
performance comparatively to single-modal networks. Fur-
ther, our proposed cross-modal network outperforms the
current state-of-the-art result by the figure of 2.63% classi-
fication accuracy. The dynamic BertBase word embedding
has proved its efficiency to learn relevant semantic infor-
mation from text corpus comparatively to static word em-
beddings, as well as the ability of heavyweight networks
to learn higher level features comparing to lightweight ar-
chitectures. For the future research, we will investigate
early fusion schemes with different modalities, exploring
new strategies that may further improve the performance
for the task of document image classification.
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